/usr/include/paraview/vtkMapper.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkMapper.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkMapper - abstract class specifies interface to map data to graphics primitives
// .SECTION Description
// vtkMapper is an abstract class to specify interface between data and
// graphics primitives. Subclasses of vtkMapper map data through a
// lookuptable and control the creation of rendering primitives that
// interface to the graphics library. The mapping can be controlled by
// supplying a lookup table and specifying a scalar range to map data
// through.
//
// There are several important control mechanisms affecting the behavior of
// this object. The ScalarVisibility flag controls whether scalar data (if
// any) controls the color of the associated actor(s) that refer to the
// mapper. The ScalarMode ivar is used to determine whether scalar point data
// or cell data is used to color the object. By default, point data scalars
// are used unless there are none, in which cell scalars are used. Or you can
// explicitly control whether to use point or cell scalar data. Finally, the
// mapping of scalars through the lookup table varies depending on the
// setting of the ColorMode flag. See the documentation for the appropriate
// methods for an explanation.
//
// Another important feature of this class is whether to use immediate mode
// rendering (ImmediateModeRenderingOn) or display list rendering
// (ImmediateModeRenderingOff). If display lists are used, a data structure
// is constructed (generally in the rendering library) which can then be
// rapidly traversed and rendered by the rendering library. The disadvantage
// of display lists is that they require additionally memory which may affect
// the performance of the system.
//
// Another important feature of the mapper is the ability to shift the
// z-buffer to resolve coincident topology. For example, if you'd like to
// draw a mesh with some edges a different color, and the edges lie on the
// mesh, this feature can be useful to get nice looking lines. (See the
// ResolveCoincidentTopology-related methods.)
// .SECTION See Also
// vtkDataSetMapper vtkPolyDataMapper
#ifndef vtkMapper_h
#define vtkMapper_h
#include "vtkRenderingCoreModule.h" // For export macro
#include "vtkAbstractMapper3D.h"
#include "vtkSystemIncludes.h" // For VTK_COLOR_MODE_DEFAULT and _MAP_SCALARS
#include "vtkSmartPointer.h" // needed for vtkSmartPointer.
#define VTK_RESOLVE_OFF 0
#define VTK_RESOLVE_POLYGON_OFFSET 1
#define VTK_RESOLVE_SHIFT_ZBUFFER 2
#define VTK_GET_ARRAY_BY_ID 0
#define VTK_GET_ARRAY_BY_NAME 1
#define VTK_MATERIALMODE_DEFAULT 0
#define VTK_MATERIALMODE_AMBIENT 1
#define VTK_MATERIALMODE_DIFFUSE 2
#define VTK_MATERIALMODE_AMBIENT_AND_DIFFUSE 3
class vtkWindow;
class vtkRenderer;
class vtkActor;
class vtkDataSet;
class vtkFloatArray;
class vtkImageData;
class vtkScalarsToColors;
class vtkUnsignedCharArray;
class VTKRENDERINGCORE_EXPORT vtkMapper : public vtkAbstractMapper3D
{
public:
vtkTypeMacro(vtkMapper, vtkAbstractMapper3D);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Make a shallow copy of this mapper.
void ShallowCopy(vtkAbstractMapper *m);
// Description:
// Overload standard modified time function. If lookup table is modified,
// then this object is modified as well.
unsigned long GetMTime();
// Description:
// Method initiates the mapping process. Generally sent by the actor
// as each frame is rendered.
virtual void Render(vtkRenderer *ren, vtkActor *a) = 0;
// Description:
// Release any graphics resources that are being consumed by this mapper.
// The parameter window could be used to determine which graphic
// resources to release.
virtual void ReleaseGraphicsResources(vtkWindow *) {}
// Description:
// Specify a lookup table for the mapper to use.
void SetLookupTable(vtkScalarsToColors *lut);
vtkScalarsToColors *GetLookupTable();
// Description:
// Create default lookup table. Generally used to create one when none
// is available with the scalar data.
virtual void CreateDefaultLookupTable();
// Description:
// Turn on/off flag to control whether scalar data is used to color objects.
vtkSetMacro(ScalarVisibility, int);
vtkGetMacro(ScalarVisibility, int);
vtkBooleanMacro(ScalarVisibility, int);
// Description:
// Turn on/off flag to control whether the mapper's data is static. Static data
// means that the mapper does not propagate updates down the pipeline, greatly
// decreasing the time it takes to update many mappers. This should only be
// used if the data never changes.
vtkSetMacro(Static, int);
vtkGetMacro(Static, int);
vtkBooleanMacro(Static, int);
// Description: Control how the scalar data is mapped to colors. By
// default (ColorModeToDefault), unsigned char scalars are treated
// as colors, and NOT mapped through the lookup table, while
// everything else is. ColorModeToDirectScalar extends
// ColorModeToDefault such that all integer types are treated as
// colors with values in the range 0-255 and floating types are
// treated as colors with values in the range 0.0-1.0. Setting
// ColorModeToMapScalars means that all scalar data will be mapped
// through the lookup table. (Note that for multi-component
// scalars, the particular component to use for mapping can be
// specified using the SelectColorArray() method.)
vtkSetMacro(ColorMode, int);
vtkGetMacro(ColorMode, int);
void SetColorModeToDefault()
{ this->SetColorMode(VTK_COLOR_MODE_DEFAULT); }
void SetColorModeToMapScalars()
{ this->SetColorMode(VTK_COLOR_MODE_MAP_SCALARS); }
void SetColorModeToDirectScalars()
{ this->SetColorMode(VTK_COLOR_MODE_DIRECT_SCALARS); }
// Description:
// Return the method of coloring scalar data.
const char *GetColorModeAsString();
// Description:
// By default, vertex color is used to map colors to a surface.
// Colors are interpolated after being mapped.
// This option avoids color interpolation by using a one dimensional
// texture map for the colors.
vtkSetMacro(InterpolateScalarsBeforeMapping, int);
vtkGetMacro(InterpolateScalarsBeforeMapping, int);
vtkBooleanMacro(InterpolateScalarsBeforeMapping, int);
// Description:
// Control whether the mapper sets the lookuptable range based on its
// own ScalarRange, or whether it will use the LookupTable ScalarRange
// regardless of it's own setting. By default the Mapper is allowed to set
// the LookupTable range, but users who are sharing LookupTables between
// mappers/actors will probably wish to force the mapper to use the
// LookupTable unchanged.
vtkSetMacro(UseLookupTableScalarRange, int);
vtkGetMacro(UseLookupTableScalarRange, int);
vtkBooleanMacro(UseLookupTableScalarRange, int);
// Description:
// Specify range in terms of scalar minimum and maximum (smin,smax). These
// values are used to map scalars into lookup table. Has no effect when
// UseLookupTableScalarRange is true.
vtkSetVector2Macro(ScalarRange, double);
vtkGetVectorMacro(ScalarRange, double, 2);
// Description:
// Turn on/off flag to control whether data is rendered using
// immediate mode or note. Immediate mode rendering
// tends to be slower but it can handle larger datasets.
// The default value is immediate mode off. If you are
// having problems rendering a large dataset you might
// want to consider using immediate more rendering.
vtkSetMacro(ImmediateModeRendering, int);
vtkGetMacro(ImmediateModeRendering, int);
vtkBooleanMacro(ImmediateModeRendering, int);
// Description:
// Turn on/off flag to control whether data is rendered using
// immediate mode or note. Immediate mode rendering
// tends to be slower but it can handle larger datasets.
// The default value is immediate mode off. If you are
// having problems rendering a large dataset you might
// want to consider using immediate more rendering.
static void SetGlobalImmediateModeRendering(int val);
static void GlobalImmediateModeRenderingOn()
{ vtkMapper::SetGlobalImmediateModeRendering(1); }
static void GlobalImmediateModeRenderingOff()
{ vtkMapper::SetGlobalImmediateModeRendering(0); }
static int GetGlobalImmediateModeRendering();
//BTX
// Description:
// Force compile only mode in case display lists are used
// (ImmediateModeRendering is false). If ImmediateModeRendering is true,
// no rendering happens. Changing the value of this flag does not change
// modified time of the mapper. Initial value is false.
// This can be used by another rendering class which also uses display lists
// (call of display lists can be nested but not their creation.)
// There is no good reason to expose it to wrappers.
vtkGetMacro(ForceCompileOnly, int);
void SetForceCompileOnly(int value);
//ETX
// Description:
// Control how the filter works with scalar point data and cell attribute
// data. By default (ScalarModeToDefault), the filter will use point data,
// and if no point data is available, then cell data is used. Alternatively
// you can explicitly set the filter to use point data
// (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData).
// You can also choose to get the scalars from an array in point field
// data (ScalarModeToUsePointFieldData) or cell field data
// (ScalarModeToUseCellFieldData). If scalars are coming from a field
// data array, you must call SelectColorArray before you call
// GetColors.
// When ScalarMode is set to use Field Data (ScalarModeToFieldData),
// you must call SelectColorArray to choose the field data array to
// be used to color cells. In this mode, the default behavior is to
// treat the field data tuples as being associated with cells. If
// the poly data contains triangle strips, the array is expected to
// contain the cell data for each mini-cell formed by any triangle
// strips in the poly data as opposed to treating them as a single
// tuple that applies to the entire strip. This mode can also be
// used to color the entire poly data by a single color obtained by
// mapping the tuple at a given index in the field data array
// through the color map. Use SetFieldDataTupleId() to specify
// the tuple index.
vtkSetMacro(ScalarMode, int);
vtkGetMacro(ScalarMode, int);
void SetScalarModeToDefault()
{ this->SetScalarMode(VTK_SCALAR_MODE_DEFAULT); }
void SetScalarModeToUsePointData()
{ this->SetScalarMode(VTK_SCALAR_MODE_USE_POINT_DATA); }
void SetScalarModeToUseCellData()
{ this->SetScalarMode(VTK_SCALAR_MODE_USE_CELL_DATA); }
void SetScalarModeToUsePointFieldData()
{ this->SetScalarMode(VTK_SCALAR_MODE_USE_POINT_FIELD_DATA); }
void SetScalarModeToUseCellFieldData()
{ this->SetScalarMode(VTK_SCALAR_MODE_USE_CELL_FIELD_DATA); }
void SetScalarModeToUseFieldData()
{ this->SetScalarMode(VTK_SCALAR_MODE_USE_FIELD_DATA); }
// Description:
// When ScalarMode is set to UsePointFieldData or UseCellFieldData,
// you can specify which array to use for coloring using these methods.
// The lookup table will decide how to convert vectors to colors.
void SelectColorArray(int arrayNum);
void SelectColorArray(const char* arrayName);
// Description:
// When ScalarMode is set to UseFieldData, set the index of the
// tuple by which to color the entire data set. By default, the
// index is -1, which means to treat the field data array selected
// with SelectColorArray as having a scalar value for each cell.
// Indices of 0 or higher mean to use the tuple at the given index
// for coloring the entire data set.
vtkSetMacro(FieldDataTupleId, vtkIdType);
vtkGetMacro(FieldDataTupleId, vtkIdType);
// Description:
// Legacy:
// These methods used to be used to specify the array component.
// It is better to do this in the lookup table.
void ColorByArrayComponent(int arrayNum, int component);
void ColorByArrayComponent(const char* arrayName, int component);
// Description:
// Get the array name or number and component to color by.
char* GetArrayName() { return this->ArrayName; }
int GetArrayId() { return this->ArrayId; }
int GetArrayAccessMode() { return this->ArrayAccessMode; }
int GetArrayComponent() { return this->ArrayComponent; }
// Description:
// Return the method for obtaining scalar data.
const char *GetScalarModeAsString();
// Description:
// Set/Get a global flag that controls whether coincident topology (e.g., a
// line on top of a polygon) is shifted to avoid z-buffer resolution (and
// hence rendering problems). If not off, there are two methods to choose
// from. PolygonOffset uses graphics systems calls to shift polygons, but
// does not distinguish vertices and lines from one another. ShiftZBuffer
// remaps the z-buffer to distinguish vertices, lines, and polygons, but
// does not always produce acceptable results. If you use the ShiftZBuffer
// approach, you may also want to set the ResolveCoincidentTopologyZShift
// value. (Note: not all mappers/graphics systems implement this
// functionality.)
static void SetResolveCoincidentTopology(int val);
static int GetResolveCoincidentTopology();
static void SetResolveCoincidentTopologyToDefault();
static void SetResolveCoincidentTopologyToOff()
{ SetResolveCoincidentTopology(VTK_RESOLVE_OFF) ;}
static void SetResolveCoincidentTopologyToPolygonOffset()
{ SetResolveCoincidentTopology(VTK_RESOLVE_POLYGON_OFFSET); }
static void SetResolveCoincidentTopologyToShiftZBuffer()
{ SetResolveCoincidentTopology(VTK_RESOLVE_SHIFT_ZBUFFER); }
// Description:
// Used to set the polygon offset scale factor and units.
// Used when ResolveCoincidentTopology is set to PolygonOffset.
// These are global variables.
static void SetResolveCoincidentTopologyPolygonOffsetParameters(
double factor, double units);
static void GetResolveCoincidentTopologyPolygonOffsetParameters(
double& factor, double& units);
// Description:
// Used to set the polygon offset values relative to the global
// Used when ResolveCoincidentTopology is set to PolygonOffset.
void SetRelativeCoincidentTopologyPolygonOffsetParameters(
double factor, double units);
void GetRelativeCoincidentTopologyPolygonOffsetParameters(
double& factor, double& units);
// Description:
// Used to set the line offset scale factor and units.
// Used when ResolveCoincidentTopology is set to PolygonOffset.
// These are global variables.
static void SetResolveCoincidentTopologyLineOffsetParameters(
double factor, double units);
static void GetResolveCoincidentTopologyLineOffsetParameters(
double& factor, double& units);
// Description:
// Used to set the line offset values relative to the global
// Used when ResolveCoincidentTopology is set to PolygonOffset.
void SetRelativeCoincidentTopologyLineOffsetParameters(
double factor, double units);
void GetRelativeCoincidentTopologyLineOffsetParameters(
double& factor, double& units);
// Description:
// Used to set the point offset value
// Used when ResolveCoincidentTopology is set to PolygonOffset.
// These are global variables.
static void SetResolveCoincidentTopologyPointOffsetParameter(
double units);
static void GetResolveCoincidentTopologyPointOffsetParameter(
double& units);
// Description:
// Used to set the point offset value relative to the global
// Used when ResolveCoincidentTopology is set to PolygonOffset.
void SetRelativeCoincidentTopologyPointOffsetParameter(double units);
void GetRelativeCoincidentTopologyPointOffsetParameter(double& units);
// Description:
// Get the net paramters for handlig coincident topology
// obtained by summing the global values with the relative values.
void GetCoincidentTopologyPolygonOffsetParameters(
double& factor, double& units);
void GetCoincidentTopologyLineOffsetParameters(
double& factor, double& units);
void GetCoincidentTopologyPointOffsetParameter(double& units);
// Description:
// Used when ResolveCoincidentTopology is set to PolygonOffset. The polygon
// offset can be applied either to the solid polygonal faces or the
// lines/vertices. When set (default), the offset is applied to the faces
// otherwise it is applied to lines and vertices.
// This is a global variable.
static void SetResolveCoincidentTopologyPolygonOffsetFaces(int faces);
static int GetResolveCoincidentTopologyPolygonOffsetFaces();
// Description:
// Used to set the z-shift if ResolveCoincidentTopology is set to
// ShiftZBuffer. This is a global variable.
static void SetResolveCoincidentTopologyZShift(double val);
static double GetResolveCoincidentTopologyZShift();
// Description:
// Return bounding box (array of six doubles) of data expressed as
// (xmin,xmax, ymin,ymax, zmin,zmax).
virtual double *GetBounds();
virtual void GetBounds(double bounds[6])
{ this->vtkAbstractMapper3D::GetBounds(bounds); }
// Description:
// This instance variable is used by vtkLODActor to determine which
// mapper to use. It is an estimate of the time necessary to render.
// Setting the render time does not modify the mapper.
void SetRenderTime(double time) {this->RenderTime = time;}
vtkGetMacro(RenderTime, double);
//BTX
// Description:
// Get the input as a vtkDataSet. This method is overridden in
// the specialized mapper classes to return more specific data types.
vtkDataSet *GetInput();
//ETX
// Description:
// Get the input to this mapper as a vtkDataSet, instead of as a
// more specialized data type that the subclass may return from
// GetInput(). This method is provided for use in the wrapper languages,
// C++ programmers should use GetInput() instead.
vtkDataSet *GetInputAsDataSet()
{ return this->GetInput(); }
// Description:
// Map the scalars (if there are any scalars and ScalarVisibility is on)
// through the lookup table, returning an unsigned char RGBA array. This is
// typically done as part of the rendering process. The alpha parameter
// allows the blending of the scalars with an additional alpha (typically
// which comes from a vtkActor, etc.)
virtual vtkUnsignedCharArray *MapScalars(double alpha);
virtual vtkUnsignedCharArray *MapScalars(vtkDataSet *input,
double alpha);
// Description:
// Set/Get the light-model color mode.
vtkSetMacro(ScalarMaterialMode,int);
vtkGetMacro(ScalarMaterialMode,int);
void SetScalarMaterialModeToDefault()
{ this->SetScalarMaterialMode(VTK_MATERIALMODE_DEFAULT); }
void SetScalarMaterialModeToAmbient()
{ this->SetScalarMaterialMode(VTK_MATERIALMODE_AMBIENT); }
void SetScalarMaterialModeToDiffuse()
{ this->SetScalarMaterialMode(VTK_MATERIALMODE_DIFFUSE); }
void SetScalarMaterialModeToAmbientAndDiffuse()
{ this->SetScalarMaterialMode(VTK_MATERIALMODE_AMBIENT_AND_DIFFUSE); }
// Description:
// Return the light-model color mode.
const char *GetScalarMaterialModeAsString();
// Description:
// Returns if the mapper does not expect to have translucent geometry. This
// may happen when using ColorMode is set to not map scalars i.e. render the
// scalar array directly as colors and the scalar array has opacity i.e. alpha
// component. Default implementation simply returns true. Note that even if
// this method returns true, an actor may treat the geometry as translucent
// since a constant translucency is set on the property, for example.
virtual bool GetIsOpaque();
// Description:
// WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE
// DO NOT USE THIS METHOD OUTSIDE OF THE RENDERING PROCESS
// Used by vtkHardwareSelector to determine if the prop supports hardware
// selection.
virtual bool GetSupportsSelection()
{ return false; }
// Description:
// Returns if we can use texture maps for scalar coloring. Note this doesn't
// say we "will" use scalar coloring. It says, if we do use scalar coloring,
// we will use a texture.
// When rendering multiblock datasets, if any 2 blocks provide different
// lookup tables for the scalars, then also we cannot use textures. This case
// can be handled if required.
virtual int CanUseTextureMapForColoring(vtkDataObject* input);
// Description:
// Used internally by vtkValuePass
void UseInvertibleColorFor(int scalarMode,
int arrayAccessMode,
int arrayId,
const char *arrayName,
int arrayComponent,
double *scalarRange);
// Description:
// Used internally by vtkValuePass.
void ClearInvertibleColor();
// Description:
// Convert a floating point value to an RGB triplet.
static void ValueToColor(double value, double min, double scale,
unsigned char *color);
// Description:
// Convert an RGB triplet to a floating point value.
static void ColorToValue(unsigned char *color, double min, double scale,
double &value);
protected:
vtkMapper();
~vtkMapper();
vtkUnsignedCharArray *Colors;
// Use texture coordinates for coloring.
int InterpolateScalarsBeforeMapping;
// Coordinate for each point.
vtkFloatArray *ColorCoordinates;
// 1D ColorMap used for the texture image.
vtkImageData* ColorTextureMap;
void MapScalarsToTexture(vtkAbstractArray* scalars, double alpha);
// Makes a lookup table that can be used for deferred colormaps
void AcquireInvertibleLookupTable();
bool UseInvertibleColors;
static vtkScalarsToColors *InvertibleLookupTable;
vtkScalarsToColors *LookupTable;
int ScalarVisibility;
vtkTimeStamp BuildTime;
double ScalarRange[2];
int UseLookupTableScalarRange;
int ImmediateModeRendering;
int ColorMode;
int ScalarMode;
int ScalarMaterialMode;
double RenderTime;
// for coloring by a component of a field data array
int ArrayId;
char ArrayName[256];
int ArrayComponent;
int ArrayAccessMode;
// If coloring by field data, which tuple to use to color the entire
// data set. If -1, treat array values as cell data.
vtkIdType FieldDataTupleId;
int Static;
int ForceCompileOnly;
vtkAbstractArray *InvertibleScalars;
double CoincidentPolygonFactor;
double CoincidentPolygonOffset;
double CoincidentLineFactor;
double CoincidentLineOffset;
double CoincidentPointOffset;
private:
vtkMapper(const vtkMapper&); // Not implemented.
void operator=(const vtkMapper&); // Not implemented.
};
#endif
|