/usr/include/paraview/vtkKdTree.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkKdTree.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*----------------------------------------------------------------------------
Copyright (c) Sandia Corporation
See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.
----------------------------------------------------------------------------*/
// .NAME vtkKdTree - a Kd-tree spatial decomposition of a set of points
//
// .SECTION Description
// Given one or more vtkDataSets, create a load balancing
// k-d tree decomposition of the points at the center of the cells.
// Or, create a k-d tree point locator from a list of points.
//
// This class can also generate a PolyData representation of
// the boundaries of the spatial regions in the decomposition.
//
// It can sort the regions with respect to a viewing direction,
// and it can decompose a list of regions into subsets, each
// of which represent a convex spatial region (since many algorithms
// require a convex region).
//
// If the points were derived from cells, vtkKdTree
// can create a list of cell Ids for each region for each data set.
// Two lists are available - all cells with centroid in the region,
// and all cells that intersect the region but whose centroid lies
// in another region.
//
// For the purpose of removing duplicate points quickly from large
// data sets, or for finding nearby points, we added another mode for
// building the locator. BuildLocatorFromPoints will build a k-d tree
// from one or more vtkPoints objects. This can be followed by
// BuildMapForDuplicatePoints which returns a mapping from the original
// ids to a subset of the ids that is unique within a supplied
// tolerance, or you can use FindPoint and FindClosestPoint to
// locate points in the original set that the tree was built from.
//
// .SECTION See Also
// vtkLocator vtkCellLocator vtkPKdTree
#ifndef vtkKdTree_h
#define vtkKdTree_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkLocator.h"
class vtkTimerLog;
class vtkIdList;
class vtkIdTypeArray;
class vtkIntArray;
class vtkPointSet;
class vtkPoints;
class vtkCellArray;
class vtkCell;
class vtkKdNode;
class vtkBSPCuts;
class vtkBSPIntersections;
class vtkDataSetCollection;
class VTKCOMMONDATAMODEL_EXPORT vtkKdTree : public vtkLocator
{
public:
vtkTypeMacro(vtkKdTree, vtkLocator);
void PrintSelf(ostream& os, vtkIndent indent);
static vtkKdTree *New();
// Description:
// Turn on timing of the k-d tree build
vtkBooleanMacro(Timing, int);
vtkSetMacro(Timing, int);
vtkGetMacro(Timing, int);
// Description:
// Minimum number of cells per spatial region. Default is 100.
vtkSetMacro(MinCells, int);
vtkGetMacro(MinCells, int);
// Description:
// Set/Get the number of spatial regions you want to get close
// to without going over. (The number of spatial regions is normally
// a power of two.) Call this before BuildLocator(). Default
// is unset (0).
vtkGetMacro(NumberOfRegionsOrLess, int);
vtkSetMacro(NumberOfRegionsOrLess, int);
// Description:
// Set/Get the number of spatial regions you want to get close
// to while having at least this many regions. (The number of
// spatial regions is normally a power of two.) Default
// is unset (0).
vtkGetMacro(NumberOfRegionsOrMore, int);
vtkSetMacro(NumberOfRegionsOrMore, int);
// Description:
// Some algorithms on k-d trees require a value that is a very
// small distance relative to the diameter of the entire space
// divided by the k-d tree. This factor is the maximum axis-aligned
// width of the space multiplied by 10e-6.
vtkGetMacro(FudgeFactor, double);
vtkSetMacro(FudgeFactor, double);
// Description:
// Get a vtkBSPCuts object, a general object representing an axis-
// aligned spatial partitioning. Used by vtkBSPIntersections.
vtkGetObjectMacro(Cuts, vtkBSPCuts);
// Description:
// Normally the k-d tree is computed from the dataset(s) provided
// in SetDataSet. Alternatively, you can provide the cuts that will
// be applied by calling SetCuts.
void SetCuts(vtkBSPCuts *cuts);
// Description:
// Omit partitions along the X axis, yielding shafts in the X direction
void OmitXPartitioning();
// Description:
// Omit partitions along the Y axis, yielding shafts in the Y direction
void OmitYPartitioning();
// Description:
// Omit partitions along the Z axis, yielding shafts in the Z direction
void OmitZPartitioning();
// Description:
// Omit partitions along the X and Y axes, yielding slabs along Z
void OmitXYPartitioning();
// Description:
// Omit partitions along the Y and Z axes, yielding slabs along X
void OmitYZPartitioning();
// Description:
// Omit partitions along the Z and X axes, yielding slabs along Y
void OmitZXPartitioning();
// Description:
// Partition along all three axes - this is the default
void OmitNoPartitioning();
// Description
// This class can compute a spatial decomposition based on the
// cells in a list of one or more input data sets.
// SetDataSet sets the first data set in the list to the named set.
// SetNthDataSet sets the data set at index N to the data set named.
// RemoveData set takes either the data set itself or an index and
// removes that data set from the list of data sets.
// AddDataSet adds a data set to the list of data sets.
// Description:
// Clear out all data sets and replace with single data set. For backward
// compatibility with superclass.
virtual void SetDataSet(vtkDataSet *set);
// Description:
// This class can compute a spatial decomposition based on the cells in a list
// of one or more input data sets. Add them one at a time with this method.
virtual void AddDataSet(vtkDataSet *set);
// Description:
// Remove the given data set.
virtual void RemoveDataSet(int index);
virtual void RemoveDataSet(vtkDataSet *set);
virtual void RemoveAllDataSets();
// Description:
// Get the number of data sets included in spatial paritioning
int GetNumberOfDataSets();
// Description:
// Get the nth defined data set in the spatial partitioning.
// (If you used SetNthDataSet to define 0,1 and 3 and ask for
// data set 2, you get 3.)
// Description:
// Return the n'th data set.
vtkDataSet *GetDataSet(int n);
// Description:
// Return the 0'th data set. For compatibility with the superclass'
// interface.
vtkDataSet *GetDataSet(){ return this->GetDataSet(0); }
// Description:
// Return a collection of all the data sets.
vtkGetObjectMacro(DataSets, vtkDataSetCollection);
// Description:
// Return the index of the given data set. Returns -1 if that data
// set does not exist.
int GetDataSetIndex(vtkDataSet *set);
// Description:
// Get the spatial bounds of the entire k-d tree space. Sets
// bounds array to xmin, xmax, ymin, ymax, zmin, zmax.
void GetBounds(double *bounds);
// Description:
// There are certain applications where you want the bounds of
// the k-d tree space to be at least as large as a specified
// box. If the k-d tree has been built, you can expand it's
// bounds with this method. If the bounds supplied are smaller
// than those computed, they will be ignored.
void SetNewBounds(double *bounds);
// Description:
// The number of leaf nodes of the tree, the spatial regions
vtkGetMacro(NumberOfRegions, int);
// Description:
// Get the spatial bounds of k-d tree region
void GetRegionBounds(int regionID, double bounds[6]);
// Description:
// Get the bounds of the data within the k-d tree region
void GetRegionDataBounds(int regionID, double bounds[6]);
// Description:
// Print out nodes of kd tree
void PrintTree();
void PrintVerboseTree();
// Description:
// Print out leaf node data for given id
void PrintRegion(int id);
// Description:
// Create a list for each of the requested regions, listing
// the IDs of all cells whose centroid falls in the region.
// These lists are obtained with GetCellList().
// If no DataSet is specified, the cell list is created
// for DataSet 0. If no list of requested regions is provided,
// the cell lists for all regions are created.
//
// When CreateCellLists is called again, the lists created
// on the previous call are deleted.
void CreateCellLists(int dataSetIndex, int *regionReqList,
int reqListSize);
void CreateCellLists(vtkDataSet *set, int *regionReqList,
int reqListSize);
void CreateCellLists(int *regionReqList, int listSize);
void CreateCellLists();
// Description:
// If IncludeRegionBoundaryCells is ON,
// CreateCellLists() will also create a list of cells which
// intersect a given region, but are not assigned
// to the region. These lists are obtained with
// GetBoundaryCellList(). Default is OFF.
vtkSetMacro(IncludeRegionBoundaryCells, int);
vtkGetMacro(IncludeRegionBoundaryCells, int);
vtkBooleanMacro(IncludeRegionBoundaryCells, int);
// Description:
// Free the memory used by the cell lists.
void DeleteCellLists();
// Description:
// Get the cell list for a region. This returns a pointer
// to vtkKdTree's memory, so don't free it.
vtkIdList *GetCellList(int regionID);
// Description:
// The cell list obtained with GetCellList is the list
// of all cells such that their centroid is contained in
// the spatial region. It may also be desirable to get
// a list of all cells intersecting a spatial region,
// but with centroid in some other region. This is that
// list. This list is computed in CreateCellLists() if
// and only if IncludeRegionBoundaryCells is ON. This
// returns a pointer to KdTree's memory, so don't free it.
vtkIdList *GetBoundaryCellList(int regionID);
// Description:
//
// For a list of regions, get two cell lists. The first lists
// the IDs all cells whose centroids lie in one of the regions.
// The second lists the IDs of all cells that intersect the regions,
// but whose centroid lies in a region not on the list.
//
// The total number of cell IDs written to both lists is returned.
// Either list pointer passed in can be NULL, and it will be ignored.
// If there are multiple data sets, you must specify which data set
// you wish cell IDs for.
//
// The caller should delete these two lists when done. This method
// uses the cell lists created in CreateCellLists().
// If the cell list for any of the requested regions does not
// exist, then this method will call CreateCellLists() to create
// cell lists for *every* region of the k-d tree. You must remember
// to DeleteCellLists() when done with all calls to this method, as
// cell lists can require a great deal of memory.
vtkIdType GetCellLists(vtkIntArray *regions, int set,
vtkIdList *inRegionCells, vtkIdList *onBoundaryCells);
vtkIdType GetCellLists(vtkIntArray *regions, vtkDataSet *set,
vtkIdList *inRegionCells, vtkIdList *onBoundaryCells);
vtkIdType GetCellLists(vtkIntArray *regions, vtkIdList *inRegionCells,
vtkIdList *onBoundaryCells);
// Description:
// Get the id of the region containing the cell centroid. If
// no DataSet is specified, assume DataSet 0. If you need the
// region ID for every cell, use AllGetRegionContainingCell
// instead. It is more efficient.
int GetRegionContainingCell(vtkDataSet *set, vtkIdType cellID);
int GetRegionContainingCell(int set, vtkIdType cellID);
int GetRegionContainingCell(vtkIdType cellID);
// Description:
// Get a list (in order by data set by cell id) of the
// region IDs of the region containing the centroid for
// each cell.
// This is faster than calling GetRegionContainingCell
// for each cell in the DataSet.
// vtkKdTree uses this list, so don't delete it.
int *AllGetRegionContainingCell();
// Description:
// Get the id of the region containing the specified location.
int GetRegionContainingPoint(double x, double y, double z);
// Description:
// Create the k-d tree decomposition of the cells of the data set
// or data sets. Cells are assigned to k-d tree spatial regions
// based on the location of their centroids.
void BuildLocator();
// Description:
// Given a list of region IDs, determine the decomposition of
// these regions into the minimal number of convex subregions. Due
// to the way the k-d tree is constructed, those convex subregions
// will be axis-aligned boxes. Return the minimal number of
// such convex regions that compose the original region list.
// This call will set convexRegionBounds to point to a list
// of the bounds of these regions. Caller should free this.
// There will be six values for each convex subregion (xmin,
// xmax, ymin, ymax, zmin, zmax). If the regions in the
// regionIdList form a box already, a "1" is returned and the
// second argument contains the bounds of the box.
int MinimalNumberOfConvexSubRegions(vtkIntArray *regionIdList,
double **convexRegionBounds);
// Description:
// Given a direction of projection (typically obtained with
// vtkCamera::GetDirectionOfProjection()), this method, creates a list of the
// k-d tree region IDs in order from front to back with respect to that
// direction. The number of ordered regions is returned. Use this method to
// view order regions for cameras that use parallel projection.
int ViewOrderAllRegionsInDirection(const double directionOfProjection[3],
vtkIntArray *orderedList);
// Description:
// Given a direction of projection and a list of k-d tree region IDs, this
// method, creates a list of the k-d tree region IDs in order from front to
// back with respect to that direction. The number of ordered regions is
// returned. Use this method to view order regions for cameras that use
// parallel projection.
int ViewOrderRegionsInDirection(vtkIntArray *regionIds,
const double directionOfProjection[3],
vtkIntArray *orderedList);
// Description:
// Given a camera position (typically obtained with vtkCamera::GetPosition()),
// this method, creates a list of the k-d tree region IDs in order from front
// to back with respect to that direction. The number of ordered regions is
// returned. Use this method to view order regions for cameras that use
// perspective projection.
int ViewOrderAllRegionsFromPosition(const double directionOfProjection[3],
vtkIntArray *orderedList);
// Description:
// Given a camera position and a list of k-d tree region IDs, this method,
// creates a list of the k-d tree region IDs in order from front to back with
// respect to that direction. The number of ordered regions is returned. Use
// this method to view order regions for cameras that use perspective
// projection.
int ViewOrderRegionsFromPosition(vtkIntArray *regionIds,
const double directionOfProjection[3],
vtkIntArray *orderedList);
// Description:
// This is a special purpose locator that builds a k-d tree to
// find duplicate and near-by points. It builds the tree from
// one or more vtkPoints objects instead of from the cells of
// a vtkDataSet. This build would normally be followed by
// BuildMapForDuplicatePoints, FindPoint, or FindClosestPoint.
// Since this will build a normal k-d tree, all the region intersection
// queries will still work, as will most other calls except those that
// have "Cell" in the name.
//
// This method works most efficiently when the point arrays are
// float arrays.
void BuildLocatorFromPoints(vtkPointSet *pointset);
void BuildLocatorFromPoints(vtkPoints *ptArray);
void BuildLocatorFromPoints(vtkPoints **ptArray, int numPtArrays);
// Description:
// This call returns a mapping from the original point IDs supplied
// to BuildLocatorFromPoints to a subset of those IDs that is unique
// within the specified tolerance.
// If points 2, 5, and 12 are the same, then
// IdMap[2] = IdMap[5] = IdMap[12] = 2 (or 5 or 12).
//
// "original point IDs" - For point IDs we start at 0 for the first
// point in the first vtkPoints object, and increase by 1 for subsequent
// points and subsequent vtkPoints objects.
//
// You must have called BuildLocatorFromPoints() before calling this.
// You are responsible for deleting the returned array.
vtkIdTypeArray *BuildMapForDuplicatePoints(float tolerance);
// Description:
// Find the Id of the point that was previously supplied
// to BuildLocatorFromPoints(). Returns -1 if the point
// was not in the original array.
vtkIdType FindPoint(double *x);
vtkIdType FindPoint(double x, double y, double z);
// Description:
// Find the Id of the point that was previously supplied
// to BuildLocatorFromPoints() which is closest to the given point.
// Set the square of the distance between the two points.
vtkIdType FindClosestPoint(double *x, double &dist2);
vtkIdType FindClosestPoint(double x, double y, double z, double &dist2);
// Description:
// Given a position x and a radius r, return the id of the point
// closest to the point in that radius.
// dist2 returns the squared distance to the point.
vtkIdType FindClosestPointWithinRadius(
double radius, const double x[3], double& dist2);
// Description:
// Find the Id of the point in the given region which is
// closest to the given point. Return the ID of the point,
// and set the square of the distance of between the points.
vtkIdType FindClosestPointInRegion(int regionId, double *x, double &dist2);
vtkIdType FindClosestPointInRegion(int regionId, double x, double y, double z,
double &dist2);
// Description:
// Find all points within a specified radius R of position x.
// The result is not sorted in any specific manner.
// These methods are thread safe if BuildLocator() is directly or
// indirectly called from a single thread first.
void FindPointsWithinRadius(double R, const double x[3], vtkIdList *result);
// Description:
// Find the closest N points to a position. This returns the closest
// N points to a position. A faster method could be created that returned
// N close points to a position, but necessarily the exact N closest.
// The returned points are sorted from closest to farthest.
// These methods are thread safe if BuildLocator() is directly or
// indirectly called from a single thread first.
void FindClosestNPoints(int N, const double x[3], vtkIdList *result);
// Description:
// Get a list of the original IDs of all points in a region. You
// must have called BuildLocatorFromPoints before calling this.
vtkIdTypeArray *GetPointsInRegion(int regionId);
// Description:
// Delete the k-d tree data structure. Also delete any
// cell lists that were computed with CreateCellLists().
void FreeSearchStructure();
// Description:
// Create a polydata representation of the boundaries of
// the k-d tree regions. If level equals GetLevel(), the
// leaf nodes are represented.
void GenerateRepresentation(int level, vtkPolyData *pd);
// Description:
// Generate a polygonal representation of a list of regions.
// Only leaf nodes have region IDs, so these will be leaf nodes.
void GenerateRepresentation(int *regionList, int len, vtkPolyData *pd);
// Description:
// The polydata representation of the k-d tree shows the boundaries
// of the k-d tree decomposition spatial regions. The data inside
// the regions may not occupy the entire space. To draw just the
// bounds of the data in the regions, set this variable ON.
vtkBooleanMacro(GenerateRepresentationUsingDataBounds, int);
vtkSetMacro(GenerateRepresentationUsingDataBounds, int);
vtkGetMacro(GenerateRepresentationUsingDataBounds, int);
// Description:
// Print timing of k-d tree build
virtual void PrintTiming(ostream& os, vtkIndent indent);
// Description:
// Return 1 if the geometry of the input data sets
// has changed since the last time the k-d tree was built.
virtual int NewGeometry();
// Description:
// Return 1 if the geometry of these data sets differs
// for the geometry of the last data sets used to build
// the k-d tree.
virtual int NewGeometry(vtkDataSet **sets, int numDataSets);
// Description:
// Forget about the last geometry used. The next call to NewGeometry will
// return 1. A new k-d tree will be built the next time BuildLocator is
// called.
virtual void InvalidateGeometry();
// Description:
// Create a copy of the binary tree representation of the
// k-d tree spatial partitioning provided.
static vtkKdNode *CopyTree(vtkKdNode *kd);
// Description:
// Fill ids with points found in area. The area is a 6-tuple containing
// (xmin, xmax, ymin, ymax, zmin, zmax).
// This method will clear the array by default. To append ids to an array,
// set clearArray to false.
void FindPointsInArea(double* area, vtkIdTypeArray* ids, bool clearArray = true);
protected:
vtkKdTree();
~vtkKdTree();
vtkBSPIntersections *BSPCalculator;
int UserDefinedCuts;
void SetCalculator(vtkKdNode *kd);
int ProcessUserDefinedCuts(double *bounds);
void SetCuts(vtkBSPCuts *cuts, int userDefined);
// Description:
// Save enough state so NewGeometry() can work,
// and update the BuildTime time stamp.
void UpdateBuildTime();
// Description:
// Prior to dividing a region at level "level", of size
// "numberOfPoints", apply the tests implied by MinCells,
// NumberOfRegionsOrMore and NumberOfRegionsOrLess. Return 1 if it's
// OK to divide the region, 0 if you should not.
int DivideTest(int numberOfPoints, int level);
//BTX
enum {
XDIM = 0, // don't change these values
YDIM = 1,
ZDIM = 2
};
//ETX
int ValidDirections;
vtkKdNode *Top;
vtkKdNode **RegionList; // indexed by region ID
vtkTimerLog *TimerLog;
static void DeleteAllDescendants(vtkKdNode *nd);
void BuildRegionList();
virtual int SelectCutDirection(vtkKdNode *kd);
void SetActualLevel(){this->Level = vtkKdTree::ComputeLevel(this->Top);}
// Description:
// Get back a list of the nodes at a specified level, nodes must
// be preallocated to hold 2^^(level) node structures.
void GetRegionsAtLevel(int level, vtkKdNode **nodes);
// Description:
// Adds to the vtkIntArray the list of region IDs of all leaf
// nodes in the given node.
static void GetLeafNodeIds(vtkKdNode *node, vtkIntArray *ids);
// Description:
// Returns the total number of cells in all the data sets
int GetNumberOfCells();
// Description:
// Returns the total number of cells in data set 1 through
// data set 2.
int GetDataSetsNumberOfCells(int set1, int set2);
// Description:
// Get or compute the center of one cell. If the DataSet is
// NULL, the first DataSet is used. This is the point used in
// determining to which spatial region the cell is assigned.
void ComputeCellCenter(vtkDataSet *set, int cellId, float *center);
void ComputeCellCenter(vtkDataSet *set, int cellId, double *center);
// Description:
// Compute and return a pointer to a list of all cell centers,
// in order by data set by cell Id. If a DataSet is specified
// cell centers for cells of that data only are returned. If
// no DataSet is specified, the cell centers of cells in all
// DataSets are returned. The caller should free the list of
// cell centers when done.
float *ComputeCellCenters();
float *ComputeCellCenters(int set);
float *ComputeCellCenters(vtkDataSet *set);
vtkDataSetCollection *DataSets;
// Description:
// Modelled on vtkAlgorithm::UpdateProgress().
// Update the progress when building the locator.
// Fires vtkCommand::ProgressEvent.
void UpdateProgress(double amount);
// Description:
// Set/Get the execution progress of a process object.
vtkSetClampMacro(Progress,double,0.0,1.0);
vtkGetMacro(Progress,double);
protected:
// So that each suboperation can report progress
// in [0,1], yet we will be able to report a global
// progress. Sub-operations must use UpdateSubOperationProgress()
// for this to work.
double ProgressScale;
double ProgressOffset;
// Update progress for a sub-operation. \c amount goes from 0.0 to 1.0.
// Actual progress is given by
// (this->ProgressOffset + this->ProgressScale* amount).
void UpdateSubOperationProgress(double amount);
static void _SetNewBounds(vtkKdNode *kd, double *b, int *fixDim);
static void CopyChildNodes(vtkKdNode *to, vtkKdNode *from);
static void CopyKdNode(vtkKdNode *to, vtkKdNode *from);
static void SetDataBoundsToSpatialBounds(vtkKdNode *kd);
static void ZeroNumberOfPoints(vtkKdNode *kd);
//BTX
// Recursive helper for public FindPointsWithinRadius
void FindPointsWithinRadius(vtkKdNode* node, double R2,
const double x[3], vtkIdList* ids);
// Recursive helper for public FindPointsWithinRadius
void AddAllPointsInRegion(vtkKdNode* node, vtkIdList* ids);
// Recursive helper for public FindPointsInArea
void FindPointsInArea(vtkKdNode* node, double* area, vtkIdTypeArray* ids);
// Recursive helper for public FindPointsInArea
void AddAllPointsInRegion(vtkKdNode* node, vtkIdTypeArray* ids);
int DivideRegion(vtkKdNode *kd, float *c1, int *ids, int nlevels);
void DoMedianFind(vtkKdNode *kd, float *c1, int *ids, int d1, int d2, int d3);
void SelfRegister(vtkKdNode *kd);
struct _cellList{
vtkDataSet *dataSet; // cell lists for which data set
int *regionIds; // NULL if listing all regions
int nRegions;
vtkIdList **cells;
vtkIdList **boundaryCells;
vtkIdList *emptyList;
};
//ETX
void InitializeCellLists();
vtkIdList *GetList(int regionId, vtkIdList **which);
void ComputeCellCenter(vtkCell* cell, double *center, double *weights);
void GenerateRepresentationDataBounds(int level, vtkPolyData *pd);
void _generateRepresentationDataBounds(vtkKdNode *kd, vtkPoints *pts,
vtkCellArray *polys, int level);
void GenerateRepresentationWholeSpace(int level, vtkPolyData *pd);
void _generateRepresentationWholeSpace(vtkKdNode *kd, vtkPoints *pts,
vtkCellArray *polys, int level);
void AddPolys(vtkKdNode *kd, vtkPoints *pts, vtkCellArray *polys);
void _printTree(int verbose);
int SearchNeighborsForDuplicate(int regionId, float *point,
int **pointsSoFar, int *len,
float tolerance, float tolerance2);
int SearchRegionForDuplicate(float *point, int *pointsSoFar,
int len, float tolerance2);
int _FindClosestPointInRegion(int regionId,
double x, double y, double z, double &dist2);
int FindClosestPointInSphere(double x, double y, double z, double radius,
int skipRegion, double &dist2);
int _ViewOrderRegionsInDirection(vtkIntArray *IdsOfInterest,
const double dop[3],
vtkIntArray *orderedList);
static int __ViewOrderRegionsInDirection(vtkKdNode *node, vtkIntArray *list,
vtkIntArray *IdsOfInterest,
const double dir[3], int nextId);
int _ViewOrderRegionsFromPosition(vtkIntArray *IdsOfInterest,
const double pos[3],
vtkIntArray *orderedList);
static int __ViewOrderRegionsFromPosition(vtkKdNode *node, vtkIntArray *list,
vtkIntArray *IdsOfInterest,
const double pos[3], int nextId);
static int __ConvexSubRegions(int *ids, int len, vtkKdNode *tree, vtkKdNode **nodes);
static int FoundId(vtkIntArray *idArray, int id);
void NewParitioningRequest(int req);
void SetInputDataInfo(int i,
int dims[3], double origin[3], double spacing[3]);
int CheckInputDataInfo(int i,
int dims[3], double origin[3], double spacing[3]);
void ClearLastBuildCache();
//BTX
static void __printTree(vtkKdNode *kd, int depth, int verbose);
//ETX
static int MidValue(int dim, float *c1, int nvals, double &coord);
static int Select(int dim, float *c1, int *ids, int nvals, double &coord);
static float FindMaxLeftHalf(int dim, float *c1, int K);
static void _Select(int dim, float *X, int *ids, int L, int R, int K);
//BTX
static int ComputeLevel(vtkKdNode *kd);
static int SelfOrder(int id, vtkKdNode *kd);
static int findRegion(vtkKdNode *node, float x, float y, float z);
static int findRegion(vtkKdNode *node, double x, double y, double z);
//ETX
static vtkKdNode **_GetRegionsAtLevel(int level, vtkKdNode **nodes,
vtkKdNode *kd);
static void AddNewRegions(vtkKdNode *kd, float *c1,
int midpt, int dim, double coord);
void NewPartitioningRequest(int req);
int NumberOfRegionsOrLess;
int NumberOfRegionsOrMore;
int IncludeRegionBoundaryCells;
double CellBoundsCache[6]; // to optimize IntersectsCell()
int GenerateRepresentationUsingDataBounds;
//BTX
struct _cellList CellList;
//ETX
// Region Ids, by data set by cell id - this list is large (one
// int per cell) but accelerates creation of cell lists
int *CellRegionList;
int MinCells;
int NumberOfRegions; // number of leaf nodes
int Timing;
double FudgeFactor; // a very small distance, relative to the dataset's size
// These instance variables are used by the special locator created
// to find duplicate points. (BuildLocatorFromPoints)
int NumberOfLocatorPoints;
float *LocatorPoints;
int *LocatorIds;
int *LocatorRegionLocation;
float MaxWidth;
// These Last* values are here to save state so we can
// determine later if k-d tree must be rebuilt.
int LastNumDataSets;
int LastDataCacheSize;
vtkDataSet **LastInputDataSets;
unsigned long *LastDataSetObserverTags;
int *LastDataSetType;
double *LastInputDataInfo;
double *LastBounds;
vtkIdType *LastNumPoints;
vtkIdType *LastNumCells;
vtkBSPCuts *Cuts;
double Progress;
vtkKdTree(const vtkKdTree&); // Not implemented
void operator=(const vtkKdTree&); // Not implemented
};
#endif
|