/usr/include/paraview/vtkImplicitModeller.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkImplicitModeller.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkImplicitModeller - compute distance from input geometry on structured point dataset
// .SECTION Description
// vtkImplicitModeller is a filter that computes the distance from the input
// geometry to the points of an output structured point set. This distance
// function can then be "contoured" to generate new, offset surfaces from
// the original geometry. An important feature of this object is
// "capping". If capping is turned on, after the implicit model is created,
// the values on the boundary of the structured points dataset are set to
// the cap value. This is used to force closure of the resulting contoured
// surface. Note, however, that large cap values can generate weird surface
// normals in those cells adjacent to the boundary of the dataset. Using
// smaller cap value will reduce this effect.
// <P>
// Another important ivar is MaximumDistance. This controls how far into the
// volume the distance function is computed from the input geometry. Small
// values give significant increases in performance. However, there can
// strange sampling effects at the extreme range of the MaximumDistance.
// <P>
// In order to properly execute and sample the input data, a rectangular
// region in space must be defined (this is the ivar ModelBounds). If not
// explicitly defined, the model bounds will be computed. Note that to avoid
// boundary effects, it is possible to adjust the model bounds (i.e., using
// the AdjustBounds and AdjustDistance ivars) to strictly contain the
// sampled data.
// <P>
// This filter has one other unusual capability: it is possible to append
// data in a sequence of operations to generate a single output. This is
// useful when you have multiple datasets and want to create a
// conglomeration of all the data. However, the user must be careful to
// either specify the ModelBounds or specify the first item such that its
// bounds completely contain all other items. This is because the
// rectangular region of the output can not be changed after the 1st Append.
// <P>
// The ProcessMode ivar controls the method used within the Append function
// (where the actual work is done regardless if the Append function is
// explicitly called) to compute the implicit model. If set to work in voxel
// mode, each voxel is visited once. If set to cell mode, each cell is visited
// once. Tests have shown once per voxel to be faster when there are a
// lot of cells (at least a thousand?); relative performance improvement
// increases with addition cells. Primitives should not be stripped for best
// performance of the voxel mode. Also, if explicitly using the Append feature
// many times, the cell mode will probably be better because each voxel will be
// visited each Append. Append the data before input if possible when using
// the voxel mode. Do not switch between voxel and cell mode between execution
// of StartAppend and EndAppend.
// <P>
// Further performance improvement is now possible using the PerVoxel process
// mode on multi-processor machines (the mode is now multithreaded). Each
// thread processes a different "slab" of the output. Also, if the input is
// vtkPolyData, it is appropriately clipped for each thread; that is, each
// thread only considers the input which could affect its slab of the output.
// <P>
// This filter can now produce output of any type supported by vtkImageData.
// However to support this change, additional sqrts must be executed during the
// Append step. Previously, the output was initialized to the squared CapValue
// in StartAppend, the output was updated with squared distance values during
// the Append, and then the sqrt of the distances was computed in EndAppend.
// To support different scalar types in the output (largely to reduce memory
// requirements as an vtkImageShiftScale and/or vtkImageCast could have
// achieved the same result), we can't "afford" to save squared value in the
// output, because then we could only represent up to the sqrt of the scalar
// max for an integer type in the output; 1 (instead of 255) for an unsigned
// char; 11 for a char (instead of 127). Thus this change may result in a
// minor performance degradation. Non-float output types can be scaled to the
// CapValue by turning ScaleToMaximumDistance On.
//
// .SECTION See Also
// vtkSampleFunction vtkContourFilter
#ifndef vtkImplicitModeller_h
#define vtkImplicitModeller_h
#include "vtkFiltersHybridModule.h" // For export macro
#include "vtkImageAlgorithm.h"
#define VTK_VOXEL_MODE 0
#define VTK_CELL_MODE 1
class vtkDataArray;
class vtkExtractGeometry;
class vtkMultiThreader;
class VTKFILTERSHYBRID_EXPORT vtkImplicitModeller : public vtkImageAlgorithm
{
public:
vtkTypeMacro(vtkImplicitModeller,vtkImageAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct with sample dimensions=(50,50,50), and so that model bounds are
// automatically computed from the input. Capping is turned on with CapValue
// equal to a large positive number.
static vtkImplicitModeller *New();
// Description:
// Compute ModelBounds from input geometry. If input is not specified, the
// input of the filter will be used.
double ComputeModelBounds(vtkDataSet *input = NULL);
// Description:
// Set/Get the i-j-k dimensions on which to sample distance function.
vtkGetVectorMacro(SampleDimensions,int,3);
void SetSampleDimensions(int i, int j, int k);
void SetSampleDimensions(int dim[3]);
// Description:
// Set / get the distance away from surface of input geometry to
// sample. This value is specified as a percentage of the length of
// the diagonal of the input data bounding box.
// Smaller values make large increases in performance.
vtkSetClampMacro(MaximumDistance,double,0.0,1.0);
vtkGetMacro(MaximumDistance,double);
// Description:
// Set / get the region in space in which to perform the sampling. If
// not specified, it will be computed automatically.
vtkSetVector6Macro(ModelBounds,double);
vtkGetVectorMacro(ModelBounds,double,6);
// Description:
// Control how the model bounds are computed. If the ivar AdjustBounds
// is set, then the bounds specified (or computed automatically) is modified
// by the fraction given by AdjustDistance. This means that the model
// bounds is expanded in each of the x-y-z directions.
vtkSetMacro(AdjustBounds,int);
vtkGetMacro(AdjustBounds,int);
vtkBooleanMacro(AdjustBounds,int);
// Description:
// Specify the amount to grow the model bounds (if the ivar AdjustBounds
// is set). The value is a fraction of the maximum length of the sides
// of the box specified by the model bounds.
vtkSetClampMacro(AdjustDistance,double,-1.0,1.0);
vtkGetMacro(AdjustDistance,double);
// Description:
// The outer boundary of the structured point set can be assigned a
// particular value. This can be used to close or "cap" all surfaces.
vtkSetMacro(Capping,int);
vtkGetMacro(Capping,int);
vtkBooleanMacro(Capping,int);
// Description:
// Specify the capping value to use. The CapValue is also used as an
// initial distance value at each point in the dataset.
void SetCapValue(double value);
vtkGetMacro(CapValue,double);
// Description:
// If a non-floating output type is specified, the output distances can be
// scaled to use the entire positive scalar range of the output type
// specified (up to the CapValue which is equal to the max for the type
// unless modified by the user). For example, if ScaleToMaximumDistance
// is On and the OutputScalarType is UnsignedChar the distances saved in the
// output would be linearly scaled between 0 (for distances "very close" to
// the surface) and 255 (at the specifed maximum distance)... assuming the
// CapValue is not changed from 255.
vtkSetMacro(ScaleToMaximumDistance, int);
vtkGetMacro(ScaleToMaximumDistance, int);
vtkBooleanMacro(ScaleToMaximumDistance,int);
// Description:
// Specify whether to visit each cell once per append or each voxel once
// per append. Some tests have shown once per voxel to be faster
// when there are a lot of cells (at least a thousand?); relative
// performance improvement increases with addition cells. Primitives
// should not be stripped for best performance of the voxel mode.
vtkSetClampMacro(ProcessMode, int, 0, 1);
vtkGetMacro(ProcessMode, int);
void SetProcessModeToPerVoxel() {this->SetProcessMode(VTK_VOXEL_MODE);}
void SetProcessModeToPerCell() {this->SetProcessMode(VTK_CELL_MODE);}
const char *GetProcessModeAsString(void);
// Description:
// Specify the level of the locator to use when using the per voxel
// process mode.
vtkSetMacro(LocatorMaxLevel,int);
vtkGetMacro(LocatorMaxLevel,int);
// Description:
// Set / Get the number of threads used during Per-Voxel processing mode
vtkSetClampMacro( NumberOfThreads, int, 1, VTK_MAX_THREADS );
vtkGetMacro( NumberOfThreads, int );
// Description:
// Set the desired output scalar type.
void SetOutputScalarType(int type);
vtkGetMacro(OutputScalarType,int);
void SetOutputScalarTypeToFloat(){this->SetOutputScalarType(VTK_FLOAT);};
void SetOutputScalarTypeToDouble(){this->SetOutputScalarType(VTK_DOUBLE);};
void SetOutputScalarTypeToInt(){this->SetOutputScalarType(VTK_INT);};
void SetOutputScalarTypeToUnsignedInt()
{this->SetOutputScalarType(VTK_UNSIGNED_INT);};
void SetOutputScalarTypeToLong(){this->SetOutputScalarType(VTK_LONG);};
void SetOutputScalarTypeToUnsignedLong()
{this->SetOutputScalarType(VTK_UNSIGNED_LONG);};
void SetOutputScalarTypeToShort(){this->SetOutputScalarType(VTK_SHORT);};
void SetOutputScalarTypeToUnsignedShort()
{this->SetOutputScalarType(VTK_UNSIGNED_SHORT);};
void SetOutputScalarTypeToUnsignedChar()
{this->SetOutputScalarType(VTK_UNSIGNED_CHAR);};
void SetOutputScalarTypeToChar()
{this->SetOutputScalarType(VTK_CHAR);};
// Description:
// Initialize the filter for appending data. You must invoke the
// StartAppend() method before doing successive Appends(). It's also a
// good idea to manually specify the model bounds; otherwise the input
// bounds for the data will be used.
void StartAppend();
// Description:
// Append a data set to the existing output. To use this function,
// you'll have to invoke the StartAppend() method before doing
// successive appends. It's also a good idea to specify the model
// bounds; otherwise the input model bounds is used. When you've
// finished appending, use the EndAppend() method.
void Append(vtkDataSet *input);
// Description:
// Method completes the append process.
void EndAppend();
// See the vtkAlgorithm for a desciption of what these do
int ProcessRequest(vtkInformation*,
vtkInformationVector**,
vtkInformationVector*);
protected:
vtkImplicitModeller();
~vtkImplicitModeller();
double GetScalarTypeMax(int type);
virtual int RequestInformation (vtkInformation *,
vtkInformationVector **,
vtkInformationVector *);
virtual int RequestData (vtkInformation *,
vtkInformationVector **, vtkInformationVector *);
void StartAppend(int internal);
void Cap(vtkDataArray *s);
vtkMultiThreader *Threader;
int NumberOfThreads;
int SampleDimensions[3];
double MaximumDistance;
double ModelBounds[6];
int Capping;
double CapValue;
int DataAppended;
int AdjustBounds;
double AdjustDistance;
int ProcessMode;
int LocatorMaxLevel;
int OutputScalarType;
int ScaleToMaximumDistance;
// flag to limit to one ComputeModelBounds per StartAppend
int BoundsComputed;
// the max distance computed during that one call
double InternalMaxDistance;
virtual int FillInputPortInformation(int, vtkInformation*);
private:
vtkImplicitModeller(const vtkImplicitModeller&); // Not implemented.
void operator=(const vtkImplicitModeller&); // Not implemented.
};
#endif
|