This file is indexed.

/usr/include/paraview/vtkImplicitFunction.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkImplicitFunction.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkImplicitFunction - abstract interface for implicit functions
// .SECTION Description
// vtkImplicitFunction specifies an abstract interface for implicit
// functions. Implicit functions are real valued functions defined in 3D
// space, w = F(x,y,z). Two primitive operations are required: the ability to
// evaluate the function, and the function gradient at a given point. The
// implicit function divides space into three regions: on the surface
// (F(x,y,z)=w), outside of the surface (F(x,y,z)>c), and inside the
// surface (F(x,y,z)<c). (When c is zero, positive values are outside,
// negative values are inside, and zero is on the surface. Note also
// that the function gradient points from inside to outside.)
//
// Implicit functions are very powerful. It is possible to represent almost
// any type of geometry with the level sets w = const, especially if you use
// boolean combinations of implicit functions (see vtkImplicitBoolean).
//
// vtkImplicitFunction provides a mechanism to transform the implicit
// function(s) via a vtkAbstractTransform.  This capability can be used to
// translate, orient, scale, or warp implicit functions.  For example,
// a sphere implicit function can be transformed into an oriented ellipse.

// .SECTION Caveats
// The transformation transforms a point into the space of the implicit
// function (i.e., the model space). Typically we want to transform the
// implicit model into world coordinates. In this case the inverse of the
// transformation is required.

// .SECTION See Also
// vtkAbstractTransform vtkSphere vtkCylinder vtkImplicitBoolean vtkPlane
// vtkPlanes vtkQuadric vtkImplicitVolume vtkSampleFunction vtkCutter
// vtkClipPolyData

#ifndef vtkImplicitFunction_h
#define vtkImplicitFunction_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"

class vtkAbstractTransform;

class VTKCOMMONDATAMODEL_EXPORT vtkImplicitFunction : public vtkObject
{
public:
  vtkTypeMacro(vtkImplicitFunction,vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Overload standard modified time function. If Transform is modified,
  // then this object is modified as well.
  unsigned long GetMTime();

  // Description:
  // Evaluate function at position x-y-z and return value. Point x[3] is
  // transformed through transform (if provided).
  double FunctionValue(const double x[3]);
  double FunctionValue(double x, double y, double z) {
    double xyz[3] = {x, y, z}; return this->FunctionValue(xyz); };

  // Description:
  // Evaluate function gradient at position x-y-z and pass back vector. Point
  // x[3] is transformed through transform (if provided).
  void FunctionGradient(const double x[3], double g[3]);
  double *FunctionGradient(const double x[3]) {
    this->FunctionGradient(x,this->ReturnValue);
    return this->ReturnValue; };
  double *FunctionGradient(double x, double y, double z) {
    double xyz[3] = {x, y, z}; return this->FunctionGradient(xyz); };

  // Description:
  // Set/Get a transformation to apply to input points before
  // executing the implicit function.
  virtual void SetTransform(vtkAbstractTransform*);
  virtual void SetTransform(const double elements[16]);
  vtkGetObjectMacro(Transform,vtkAbstractTransform);

  // Description:
  // Evaluate function at position x-y-z and return value.  You should
  // generally not call this method directly, you should use
  // FunctionValue() instead.  This method must be implemented by
  // any derived class.
  virtual double EvaluateFunction(double x[3]) = 0;
  double EvaluateFunction(double x, double y, double z) {
    double xyz[3] = {x, y, z}; return this->EvaluateFunction(xyz); };

  // Description:
  // Evaluate function gradient at position x-y-z and pass back vector.
  // You should generally not call this method directly, you should use
  // FunctionGradient() instead.  This method must be implemented by
  // any derived class.
  virtual void EvaluateGradient(double x[3], double g[3]) = 0;

protected:
  vtkImplicitFunction();
  ~vtkImplicitFunction();

  vtkAbstractTransform *Transform;
  double ReturnValue[3];
private:
  vtkImplicitFunction(const vtkImplicitFunction&);  // Not implemented.
  void operator=(const vtkImplicitFunction&);  // Not implemented.
};

#endif