/usr/include/paraview/vtkHyperOctreeCutter.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkHyperOctreeCutter.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkHyperOctreeCutter - Cut vtkHyperOctree with user-specified
// implicit function
// .SECTION Description
// vtkHyperOctreeCutter is a filter to cut through data using any subclass of
// vtkImplicitFunction. That is, a polygonal surface is created
// corresponding to the implicit function F(x,y,z) = value(s), where
// you can specify one or more values used to cut with.
//
// In VTK, cutting means reducing a cell of dimension N to a cut surface
// of dimension N-1. For example, a tetrahedron when cut by a plane (i.e.,
// vtkPlane implicit function) will generate triangles. (In comparison,
// clipping takes a N dimensional cell and creates N dimension primitives.)
//
// vtkHyperOctreeCutter is generally used to "slice-through" a dataset,
// generating a surface that can be visualized. It is also possible to use
// vtkHyperOctreeCutter to do a form of volume rendering. vtkHyperOctreeCutter
// does this by generating multiple cut surfaces (usually planes) which are
// ordered (and rendered) from back-to-front. The surfaces are set translucent
// to give a volumetric rendering effect.
//
// Note that data can be cut using either 1) the scalar values associated
// with the dataset or 2) an implicit function associated with this class.
// By default, if an implicit function is set it is used to cut the data
// set, otherwise the dataset scalars are used to perform the cut.
// .SECTION See Also
// vtkImplicitFunction vtkHyperOctree
#ifndef vtkHyperOctreeCutter_h
#define vtkHyperOctreeCutter_h
#include "vtkFiltersHyperTreeModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
#include "vtkContourValues.h" // Needed for inline methods
#include "vtkCutter.h" // for VTK_SORT_BY_VALUE and VTK_SORT_BY_CELL
//#define VTK_SORT_BY_VALUE 0
//#define VTK_SORT_BY_CELL 1
// This does not really belong here, ut it is for a temporary
// fix until this filter can be converted to geernate unstructured grids.
//#define VTK_NUMBER_OF_CELL_TYPES 68
class vtkImplicitFunction;
class vtkIncrementalPointLocator;
class vtkHyperOctree;
class vtkOrderedTriangulator;
class vtkHyperOctreeCursor;
class vtkTetra;
class vtkDataSetAttributes;
class vtkHyperOctreeClipCutPointsGrabber;
class VTKFILTERSHYPERTREE_EXPORT vtkHyperOctreeCutter : public vtkPolyDataAlgorithm
{
public:
vtkTypeMacro(vtkHyperOctreeCutter,vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct with user-specified implicit function; initial value of 0.0; and
// generating cut scalars turned off.
static vtkHyperOctreeCutter *New();
// Description:
// Set a particular contour value at contour number i. The index i ranges
// between 0<=i<NumberOfContours.
void SetValue(int i, double value)
{this->ContourValues->SetValue(i,value);}
// Description:
// Get the ith contour value.
double GetValue(int i)
{return this->ContourValues->GetValue(i);}
// Description:
// Get a pointer to an array of contour values. There will be
// GetNumberOfContours() values in the list.
double *GetValues()
{return this->ContourValues->GetValues();}
// Description:
// Fill a supplied list with contour values. There will be
// GetNumberOfContours() values in the list. Make sure you allocate
// enough memory to hold the list.
void GetValues(double *contourValues)
{this->ContourValues->GetValues(contourValues);}
// Description:
// Set the number of contours to place into the list. You only really
// need to use this method to reduce list size. The method SetValue()
// will automatically increase list size as needed.
void SetNumberOfContours(int number)
{this->ContourValues->SetNumberOfContours(number);}
// Description:
// Get the number of contours in the list of contour values.
int GetNumberOfContours()
{return this->ContourValues->GetNumberOfContours();}
// Description:
// Generate numContours equally spaced contour values between specified
// range. Contour values will include min/max range values.
void GenerateValues(int numContours, double range[2])
{this->ContourValues->GenerateValues(numContours, range);}
// Description:
// Generate numContours equally spaced contour values between specified
// range. Contour values will include min/max range values.
void GenerateValues(int numContours, double rangeStart, double rangeEnd)
{this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);}
// Description:
// Override GetMTime because we delegate to vtkContourValues and refer to
// vtkImplicitFunction.
unsigned long GetMTime();
// Description
// Specify the implicit function to perform the cutting.
virtual void SetCutFunction(vtkImplicitFunction*);
vtkGetObjectMacro(CutFunction,vtkImplicitFunction);
// Description:
// If this flag is enabled, then the output scalar values will be
// interpolated from the implicit function values, and not the input scalar
// data.
vtkSetMacro(GenerateCutScalars,int);
vtkGetMacro(GenerateCutScalars,int);
vtkBooleanMacro(GenerateCutScalars,int);
// Description:
// Specify a spatial locator for merging points. By default,
// an instance of vtkMergePoints is used.
void SetLocator(vtkIncrementalPointLocator *locator);
vtkGetObjectMacro(Locator,vtkIncrementalPointLocator);
// Description:
// Set the sorting order for the generated polydata. There are two
// possibilities:
// Sort by value = 0 - This is the most efficient sort. For each cell,
// all contour values are processed. This is the default.
// Sort by cell = 1 - For each contour value, all cells are processed.
// This order should be used if the extracted polygons must be rendered
// in a back-to-front or front-to-back order. This is very problem
// dependent.
// For most applications, the default order is fine (and faster).
//
// Sort by cell is going to have a problem if the input has 2D and 3D cells.
// Cell data will be scrambled becauses with
// vtkPolyData output, verts and lines have lower cell ids than triangles.
vtkSetClampMacro(SortBy,int,VTK_SORT_BY_VALUE,VTK_SORT_BY_CELL);
vtkGetMacro(SortBy,int);
void SetSortByToSortByValue()
{this->SetSortBy(VTK_SORT_BY_VALUE);}
void SetSortByToSortByCell()
{this->SetSortBy(VTK_SORT_BY_CELL);}
// Description:
// Return the sorting procedure as a descriptive character string.
const char *GetSortByAsString()
{
if ( this->SortBy == VTK_SORT_BY_VALUE )
{
return "SortByValue";
}
else
{
return "SortByCell";
}
}
// Description:
// Create default locator. Used to create one when none is specified. The
// locator is used to merge coincident points.
void CreateDefaultLocator();
protected:
vtkHyperOctreeCutter(vtkImplicitFunction *cf=NULL);
~vtkHyperOctreeCutter();
virtual int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *);
virtual int RequestUpdateExtent(vtkInformation *, vtkInformationVector **, vtkInformationVector *);
virtual int FillInputPortInformation(int port, vtkInformation *info);
// Description:
// Cut the sub-hierarchy pointed by cursor.
// \pre cursor_exists: cursor!=0
// \pre positive_level: level>=0
void CutNode(vtkHyperOctreeCursor *cursor,
int level,
double bounds[6]);
vtkImplicitFunction *CutFunction;
vtkIncrementalPointLocator *Locator;
int SortBy;
vtkContourValues *ContourValues;
int GenerateCutScalars;
vtkHyperOctree *Input;
vtkPolyData *Output;
vtkCellArray *NewVerts;
vtkCellArray *NewLines;
vtkCellArray *NewPolys;
vtkDataSetAttributes *InCD;
vtkCellData *OutCD;
vtkPointData *OutPD;
vtkOrderedTriangulator *Triangulator;
vtkHyperOctreeCursor *Sibling; // to avoid allocation in the loop
int Iter; // iterate over contour values in case of VTK_SORT_BY_CELL
vtkDoubleArray *CellScalars;
vtkTetra *Tetra;
vtkDoubleArray *TetScalars;
vtkPoints *Pts;
vtkPolygon *Polygon;
vtkIdType CellTypeCounter[65536]; // up-to-65536 points per octant
vtkIdType TotalCounter;
vtkIdType TemplateCounter; // record the number of octants that succceed
// to use the template triangulator
// in VTK_SORT_BY_VALUE case, rejection test need to combine all values.
int *AllLess;
int *AllGreater;
vtkHyperOctreeClipCutPointsGrabber *Grabber;
private:
vtkHyperOctreeCutter(const vtkHyperOctreeCutter&); // Not implemented.
void operator=(const vtkHyperOctreeCutter&); // Not implemented.
};
#endif
|