/usr/include/paraview/vtkHyperOctree.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkHyperOctree.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkHyperOctree - A dataset structured as a tree where each node has
// exactly 2^n children.
// .SECTION Description
// An hyperoctree is a dataset where each node has either exactly 2^n children
// or no child at all if the node is a leaf. `n' is the dimension of the
// dataset (1 (binary tree), 2 (quadtree) or 3 (octree) ).
// The class name comes from the following paper:
//
// \verbatim
// @ARTICLE{yau-srihari-1983,
// author={Mann-May Yau and Sargur N. Srihari},
// title={A Hierarchical Data Structure for Multidimensional Digital Images},
// journal={Communications of the ACM},
// month={July},
// year={1983},
// volume={26},
// number={7},
// pages={504--515}
// }
// \endverbatim
//
// Each node is a cell. Attributes are associated with cells, not with points.
// The geometry is implicitly given by the size of the root node on each axis
// and position of the center and the orientation. (TODO: review center
// position and orientation). The geometry is then not limited to an hybercube
// but can have a rectangular shape.
// Attributes are associated with leaves. For LOD (Level-Of-Detail) purpose,
// attributes can be computed on none-leaf nodes by computing the average
// values from its children (which can be leaves or not).
//
// By construction, an hyperoctree is efficient in memory usage when the
// geometry is sparse. The LOD feature allows to cull quickly part of the
// dataset.
//
// A couple of filters can be applied on this dataset: contour, outline,
// geometry.
//
// * 3D case (octree)
// for each node, each child index (from 0 to 7) is encoded in the following
// orientation. It is easy to access each child as a cell of a grid.
// Note also that the binary representation is relevant, each bit code a
// side: bit 0 encodes -x side (0) or +x side (1)
// bit 1 encodes -y side (0) or +y side (1)
// bit 2 encodes -z side (0) or +z side (2)
// - the -z side first
// - 0: -y -x sides
// - 1: -y +x sides
// - 2: +y -x sides
// - 3: +y +x sides
// \verbatim
// +y
// +-+-+ ^
// |2|3| |
// +-+-+ O +z +-> +x
// |0|1|
// +-+-+
// \endverbatim
//
// - then the +z side, in counter-clockwise
// - 4: -y -x sides
// - 5: -y +x sides
// - 6: +y -x sides
// - 7: +y +x sides
// \verbatim
// +y
// +-+-+ ^
// |6|7| |
// +-+-+ O +z +-> +x
// |4|5|
// +-+-+
// \endverbatim
//
// The cases with fewer dimensions are consistent with the octree case:
//
// * Quadtree:
// in counter-clockwise
// - 0: -y -x edges
// - 1: -y +x edges
// - 2: +y -x edges
// - 3: +y +x edges
// \verbatim
// +y
// +-+-+ ^
// |2|3| |
// +-+-+ O+-> +x
// |0|1|
// +-+-+
// \endverbatim
//
// * Binary tree:
// \verbatim
// +0+1+ O+-> +x
// \endverbatim
//
// .SECTION Caveats
// It is not a spatial search object! If you looking for this kind of
// octree see vtkCellLocator instead.
// .SECTION See Also
// vtkHyperOctreeAlgorithm
#ifndef vtkHyperOctree_h
#define vtkHyperOctree_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkDataSet.h"
class vtkHyperOctreeLightWeightCursor;
class vtkHyperOctreeCursor;
class vtkHyperOctreeInternal;
class vtkHyperOctreePointsGrabber;
class vtkHyperOctreeIdSet; // Pimpl idiom
class vtkPolygon;
class vtkIdTypeArray;
class vtkPoints;
class vtkPointLocator;
class vtkOrderedTriangulator;
class vtkDataSetAttributes;
class vtkLine;
class vtkPixel;
class vtkVoxel;
class vtkCellLinks;
class VTKCOMMONDATAMODEL_EXPORT vtkHyperOctree : public vtkDataSet
{
public:
static vtkInformationIntegerKey* LEVELS();
static vtkInformationIntegerKey* DIMENSION();
static vtkInformationDoubleVectorKey* SIZES();
static vtkHyperOctree *New();
vtkTypeMacro(vtkHyperOctree,vtkDataSet);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Return what type of dataset this is.
int GetDataObjectType();
// Description:
// Copy the geometric and topological structure of an input rectilinear grid
// object.
void CopyStructure(vtkDataSet *ds);
// Return the node describes by the path from the root.
// Path is a sequence of number between 0 and 7.
// \pre path_exists: path!=0
// \pre node_exists: IsANode(path)
// vtkOctree *GetNode(vtkPath *path);
// Description:
// Return the dimension of the tree (1D:binary tree(2 children), 2D:quadtree(4 children),
// 3D:octree (8 children))
// \post valid_result: result>=1 && result<=3
int GetDimension();
// Description:
// Set the dimension of the tree with `dim'. See GetDimension() for details.
// \pre valid_dim: dim>=1 && dim<=3
// \post dimension_is_set: GetDimension()==dim
void SetDimension(int dim);
// Return if the node for the given path exists or not.
// \pre path_exists: path!=0
// int IsANode(vtkPath *path);
// Return if the node for the given path is a leaf or not.
// \pre path_exists: path!=0
// \pre node_exists: IsANode(path)
// int IsALeaf(vtkPath *path);
// Measurement: topology
// Description:
// Return the number of cells in the dual grid.
// \post positive_result: result>=0
vtkIdType GetNumberOfCells();
// Description:
// Get the number of leaves in the tree.
vtkIdType GetNumberOfLeaves();
// Description:
// Return the number of points in the dual grid.
// \post positive_result: result>=0
vtkIdType GetNumberOfPoints();
// Description:
// Return the number of points corresponding to an hyperoctree starting at
// level `level' where all the leaves at at the last level. In this case, the
// hyperoctree is like a uniform grid. So this number is the number of points
// of the uniform grid.
// \pre positive_level: level>=0 && level<this->GetNumberOfLevels()
// \post definition: result==(2^(GetNumberOfLevels()-level-1)+1)^GetDimension()
vtkIdType GetMaxNumberOfPoints(int level);
// Description:
// Return the number of points corresponding to the boundary of an
// hyperoctree starting at level `level' where all the leaves at at the last
// level. In this case, the hyperoctree is like a uniform grid. So this
// number is the number of points of on the boundary of the uniform grid.
// For an octree, the boundary are the faces. For a quadtree, the boundary
// are the edges.
// \pre 2d_or_3d: this->GetDimension()==2 || this->GetDimension()==3
// \pre positive_level: level>=0 && level<this->GetNumberOfLevels()
// \post min_result: result>=GetMaxNumberOfPoints(this->GetNumberOfLevels()-1)
// \post max_result: result<=GetMaxNumberOfPoints(level)
vtkIdType GetMaxNumberOfPointsOnBoundary(int level);
// Description:
// Return the number of cells corresponding to the boundary of a cell
// of level `level' where all the leaves at at the last level.
// \pre positive_level: level>=0 && level<this->GetNumberOfLevels()
// \post positive_result: result>=0
vtkIdType GetMaxNumberOfCellsOnBoundary(int level);
// Description:
// Return the number of levels.
// \post result_greater_or_equal_to_one: result>=1
vtkIdType GetNumberOfLevels();
// Measurement: geometry
// Description:
// Set the size on each axis.
vtkSetVector3Macro(Size,double);
// Description:
// Return the size on each axis.
vtkGetVector3Macro(Size,double);
// Description:
// Set the origin (position of corner (0,0,0) of the root.
vtkSetVector3Macro(Origin,double);
// Return the origin (position of corner (0,0,0) ) of the root.
vtkGetVector3Macro(Origin,double);
// Description:
// Create a new cursor: an object that can traverse
// the cell of an hyperoctree.
// \post result_exists: result!=0
vtkHyperOctreeCursor *NewCellCursor();
// Description:
// Subdivide node pointed by cursor, only if its a leaf.
// At the end, cursor points on the node that used to be leaf.
// \pre leaf_exists: leaf!=0
// \pre is_a_leaf: leaf->CurrentIsLeaf()
void SubdivideLeaf(vtkHyperOctreeCursor *leaf);
// Description:
// Collapse a node for which all children are leaves.
// At the end, cursor points on the leaf that used to be a node.
// \pre node_exists: node!=0
// \pre node_is_node: !node->CurrentIsLeaf()
// \pre children_are_leaves: node->CurrentIsTerminalNode()
void CollapseTerminalNode(vtkHyperOctreeCursor *node);
// Description:
// Get point coordinates with ptId such that: 0 <= ptId < NumberOfPoints.
// THIS METHOD IS NOT THREAD SAFE.
virtual double *GetPoint(vtkIdType ptId);
// Description:
// Copy point coordinates into user provided array x[3] for specified
// point id.
// THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
// THE DATASET IS NOT MODIFIED
virtual void GetPoint(vtkIdType id, double x[3]);
// Description:
// Get cell with cellId such that: 0 <= cellId < NumberOfCells.
// THIS METHOD IS NOT THREAD SAFE.
virtual vtkCell *GetCell(vtkIdType cellId);
// Description:
// Get cell with cellId such that: 0 <= cellId < NumberOfCells.
// This is a thread-safe alternative to the previous GetCell()
// method.
// THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
// THE DATASET IS NOT MODIFIED
virtual void GetCell(vtkIdType cellId, vtkGenericCell *cell);
// Description:
// Get type of cell with cellId such that: 0 <= cellId < NumberOfCells.
// THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
// THE DATASET IS NOT MODIFIED
virtual int GetCellType(vtkIdType cellId);
// Description:
// Topological inquiry to get points defining cell.
// THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
// THE DATASET IS NOT MODIFIED
virtual void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds);
virtual void GetCellPoints(vtkIdType cellId, vtkIdType& npts,
vtkIdType* &pts);
// Description:
// Topological inquiry to get cells using point.
// THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
// THE DATASET IS NOT MODIFIED
virtual void GetPointCells(vtkIdType ptId, vtkIdList *cellIds);
// Description:
// Topological inquiry to get all cells using list of points exclusive of
// cell specified (e.g., cellId). Note that the list consists of only
// cells that use ALL the points provided.
// THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
// THE DATASET IS NOT MODIFIED
virtual void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds,
vtkIdList *cellIds);
virtual vtkIdType FindPoint(double x[3]);
// Description:
// Locate cell based on global coordinate x and tolerance
// squared. If cell and cellId is non-NULL, then search starts from
// this cell and looks at immediate neighbors. Returns cellId >= 0
// if inside, < 0 otherwise. The parametric coordinates are
// provided in pcoords[3]. The interpolation weights are returned in
// weights[]. (The number of weights is equal to the number of
// points in the found cell). Tolerance is used to control how close
// the point is to be considered "in" the cell.
// THIS METHOD IS NOT THREAD SAFE.
virtual vtkIdType FindCell(double x[3], vtkCell *cell, vtkIdType cellId,
double tol2, int& subId, double pcoords[3],
double *weights);
// Description:
// This is a version of the above method that can be used with
// multithreaded applications. A vtkGenericCell must be passed in
// to be used in internal calls that might be made to GetCell()
// THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
// THE DATASET IS NOT MODIFIED
virtual vtkIdType FindCell(double x[3], vtkCell *cell,
vtkGenericCell *gencell, vtkIdType cellId,
double tol2, int& subId, double pcoords[3],
double *weights);
// Description:
// Restore data object to initial state,
// THIS METHOD IS NOT THREAD SAFE.
void Initialize();
// Description:
// Convenience method returns largest cell size in dataset. This is generally
// used to allocate memory for supporting data structures.
// This is the number of points of a cell.
// THIS METHOD IS THREAD SAFE
virtual int GetMaxCellSize();
// Description:
// Shallow and Deep copy.
void ShallowCopy(vtkDataObject *src);
void DeepCopy(vtkDataObject *src);
// Description:
// Get the points of node `sibling' on its face `face'.
// \pre sibling_exists: sibling!=0
// \pre sibling_not_leaf: !sibling->CurrentIsLeaf()
// \pre sibling_3d: sibling->GetDimension()==3
// \pre valid_face: face>=0 && face<6
// \pre valid_level_not_leaf: level>=0 level<(this->GetNumberOfLevels()-1)
void GetPointsOnFace(vtkHyperOctreeCursor *sibling,
int face,
int level,
vtkHyperOctreePointsGrabber *grabber);
// Description:
// Get the points of the parent node of `cursor' on its faces `faces' at
// level `level' or deeper.
// \pre cursor_exists: cursor!=0
// \pre cursor_3d: cursor->GetDimension()==3
// \pre valid_level: level>=0
// \pre boolean_faces: (faces[0]==0 || faces[0]==1) && (faces[1]==0 || faces[1]==1) && (faces[2]==0 || faces[2]==1)
void GetPointsOnParentFaces(int faces[3],
int level,
vtkHyperOctreeCursor *cursor,
vtkHyperOctreePointsGrabber *grabber);
// Description:
// Get the points of node `sibling' on its edge `axis','k','j'.
// If axis==0, the edge is X-aligned and k gives the z coordinate and j the
// y-coordinate. If axis==1, the edge is Y-aligned and k gives the x coordinate
// and j the z coordinate. If axis==2, the edge is Z-aligned and k gives the
// y coordinate and j the x coordinate.
// \pre sibling_exists: sibling!=0
// \pre sibling_3d: sibling->GetDimension()==3
// \pre sibling_not_leaf: !sibling->CurrentIsLeaf()
// \pre valid_axis: axis>=0 && axis<3
// \pre valid_k: k>=0 && k<=1
// \pre valid_j: j>=0 && j<=1
// \pre valid_level_not_leaf: level>=0 level<(this->Input->GetNumberOfLevels()-1)
void GetPointsOnEdge(vtkHyperOctreeCursor *sibling,
int level,
int axis,
int k,
int j,
vtkHyperOctreePointsGrabber *grabber);
// Description:
// Get the points of the parent node of `cursor' on its edge `axis','k','j'
// at level `level' or deeper.
// If axis==0, the edge is X-aligned and k gives the z coordinate and j the
// y-coordinate. If axis==1, the edge is Y-aligned and k gives the x
// coordinate and j the z coordinate. If axis==2, the edge is Z-aligned and
// k gives the y coordinate and j the x coordinate.
// \pre cursor_exists: cursor!=0
// \pre cursor_3d: cursor->GetDimension()==3
// \pre valid_level: level>=0
// \pre valid_range_axis: axis>=0 && axis<3
// \pre valid_range_k: k>=0 && k<=1
// \pre valid_range_j: j>=0 && j<=1
void GetPointsOnParentEdge(vtkHyperOctreeCursor *cursor,
int level,
int axis,
int k,
int j,
vtkHyperOctreePointsGrabber *grabber);
// Description:
// Get the points of node `sibling' on its edge `edge'.
// \pre sibling_exists: sibling!=0
// \pre sibling_not_leaf: !sibling->CurrentIsLeaf()
// \pre sibling_2d: sibling->GetDimension()==2
// \pre valid_edge: edge>=0 && edge<4
// \pre valid_level_not_leaf: level>=0 level<(this->Input->GetNumberOfLevels()-1)
void GetPointsOnEdge2D(vtkHyperOctreeCursor *sibling,
int edge,
int level,
vtkHyperOctreePointsGrabber *grabber);
// Description:
// Get the points of the parent node of `cursor' on its edge `edge' at
// level `level' or deeper. (edge=0 for -X, 1 for +X, 2 for -Y, 3 for +Y)
// \pre cursor_exists: cursor!=0
// \pre cursor_2d: cursor->GetDimension()==2
// \pre valid_level: level>=0
// \pre valid_edge: edge>=0 && edge<4
void GetPointsOnParentEdge2D(vtkHyperOctreeCursor *cursor,
int edge,
int level,
vtkHyperOctreePointsGrabber *grabber);
// Description:
// A generic way to set the leaf data attributes.
// This can be either point data for dual or cell data for normal grid.
vtkDataSetAttributes* GetLeafData();
// Description:
// Switch between returning leaves as cells, or the dual grid.
void SetDualGridFlag(int flag);
vtkGetMacro(DualGridFlag,int);
// Description:
// Return the actual size of the data in kibibytes (1024 bytes). This number
// is valid only after the pipeline has updated. The memory size
// returned is guaranteed to be greater than or equal to the
// memory required to represent the data (e.g., extra space in
// arrays, etc. are not included in the return value). THIS METHOD
// IS THREAD SAFE.
unsigned long GetActualMemorySize();
//BTX
// Description:
// Retrieve an instance of this class from an information object.
static vtkHyperOctree* GetData(vtkInformation* info);
static vtkHyperOctree* GetData(vtkInformationVector* v, int i=0);
//ETX
protected:
// Constructor with default bounds (0,1, 0,1, 0,1).
vtkHyperOctree();
~vtkHyperOctree();
void ComputeBounds();
int Dimension; // 1, 2 or 3.
double Size[3]; // size on each axis
double Origin[3]; // position of corner (0,0,0) of the root.
vtkHyperOctreeInternal *CellTree;
vtkHyperOctreeCursor *TmpChild; // to avoid allocation in the loop
//BTX
friend class vtkHyperOctreeLightWeightCursor;
//ETX
// Initialize the arrays if necessary, then return it.
void UpdateDualArrays();
vtkPoints* GetLeafCenters();
vtkIdTypeArray* GetCornerLeafIds();
vtkPoints *LeafCenters;
vtkIdTypeArray *CornerLeafIds;
void UpdateGridArrays();
vtkPoints* GetCornerPoints();
vtkIdTypeArray* GetLeafCornerIds();
vtkPoints* CornerPoints;
vtkIdTypeArray* LeafCornerIds;
void DeleteInternalArrays();
void TraverseDualRecursively(vtkHyperOctreeLightWeightCursor* neighborhood,
unsigned short *xyzIds, int level);
void TraverseGridRecursively(vtkHyperOctreeLightWeightCursor* neighborhood,
unsigned char* visited,
double* origin, double* size);
void EvaluateDualCorner(vtkHyperOctreeLightWeightCursor* neighborhood);
vtkIdType EvaluateGridCorner(int level,vtkHyperOctreeLightWeightCursor* neighborhood,
unsigned char* visited, int* cornerNeighborIds);
// This is a table for traversing a neighborhood down an octree.
// 8 children x 27 cursors
// First three bits encode the child, rest encode the cursor id.
// 8xCursorId + childId.
// This will be shorter when we get rid of the 3x3x3 neighborhood.
// I was using unsigned char, but VS60 optimized build had a problem.
int NeighborhoodTraversalTable[216];
void GenerateGridNeighborhoodTraversalTable();
void GenerateDualNeighborhoodTraversalTable();
// for the GetCell method
vtkLine *Line;
vtkPixel *Pixel;
vtkVoxel *Voxel;
vtkCellLinks* Links;
void BuildLinks();
vtkIdType RecursiveFindPoint(double x[3],
vtkHyperOctreeLightWeightCursor* cursor,
double *origin, double *size);
// This toggles the data set API between the leaf cells and
// the dual grid (leaves are points, corners are cells).
int DualGridFlag;
private:
vtkHyperOctree(const vtkHyperOctree&); // Not implemented.
void operator=(const vtkHyperOctree&); // Not implemented.
};
//BTX
class VTKCOMMONDATAMODEL_EXPORT vtkHyperOctreeLightWeightCursor
{
public:
vtkHyperOctreeLightWeightCursor();
void Initialize(vtkHyperOctree* tree);
void ToRoot();
void ToChild(int child);
unsigned short GetIsLeaf();
int GetLeafIndex() {return this->Index;} // Only valid for leaves.
vtkHyperOctree* GetTree() { return this->Tree; }
unsigned short GetLevel() {return this->Level;}
private:
vtkHyperOctree* Tree;
int Index;
unsigned short IsLeaf;
unsigned short Level;
};
//ETX
#endif
|