/usr/include/paraview/vtkGenericStreamTracer.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkGenericStreamTracer.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGenericStreamTracer - Streamline generator
// .SECTION Description
// vtkGenericStreamTracer is a filter that integrates a vector field to
// generate streamlines. The integration is performed using the provided
// integrator. The default is second order Runge-Kutta.
//
// vtkGenericStreamTracer generate polylines as output. Each cell (polyline)
// corresponds to one streamline. The values associated with each streamline
// are stored in the cell data whereas the values associated with points
// are stored in point data.
//
// Note that vtkGenericStreamTracer can integrate both forward and backward.
// The length of the streamline is controlled by specifying either
// a maximum value in the units of length, cell length or elapsed time
// (the elapsed time is the time each particle would have traveled if
// flow were steady). Otherwise, the integration terminates after exiting
// the dataset or if the particle speed is reduced to a value less than
// the terminal speed or when a maximum number of steps is reached.
// The reason for the termination is stored in a cell array named
// ReasonForTermination.
//
// The quality of integration can be controlled by setting integration
// step (InitialIntegrationStep) and in the case of adaptive solvers
// the maximum error, the minimum integration step and the maximum
// integration step. All of these can have units of length, cell length
// or elapsed time.
//
// The integration time, vorticity, rotation and angular velocity
// are stored in point arrays named "IntegrationTime", "Vorticity",
// "Rotation" and "AngularVelocity" respectively (vorticity, rotation
// and angular velocity are computed only when ComputeVorticity is on).
// All point attributes in the source data set are interpolated on the
// new streamline points.
//
// vtkGenericStreamTracer integrates through any type of dataset. As a result,
// if the dataset contains 2D cells such as polygons or triangles, the
// integration is constrained to lie on the surface defined by the 2D cells.
//
// The starting point of traces may be defined in two different ways.
// Starting from global x-y-z "position" allows you to start a single trace
// at a specified x-y-z coordinate. If you specify a source object,
// a trace will be generated for each point in the source that is
// inside the dataset.
//
// .SECTION See Also
// vtkRibbonFilter vtkRuledSurfaceFilter vtkInitialValueProblemSolver
// vtkRungeKutta2 vtkRungeKutta4 vtkRungeKutta45
#ifndef vtkGenericStreamTracer_h
#define vtkGenericStreamTracer_h
#include "vtkFiltersGenericModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
#include "vtkInitialValueProblemSolver.h" // Needed for constants
class vtkDataArray;
class vtkGenericAdaptorCell;
class vtkIdList;
class vtkIntArray;
class vtkGenericInterpolatedVelocityField;
class vtkDataSet;
class vtkGenericAttribute;
class vtkGenericDataSet;
class VTKFILTERSGENERIC_EXPORT vtkGenericStreamTracer : public vtkPolyDataAlgorithm
{
public:
vtkTypeMacro(vtkGenericStreamTracer,vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct object to start from position (0,0,0), integrate forward,
// terminal speed 1.0E-12, vorticity computation on, integration
// step length 0.5 (unit cell length), maximum number of steps 2000,
// using 2nd order Runge Kutta and maximum propagation 1.0 (unit length).
static vtkGenericStreamTracer *New();
// Description:
// Specify the start of the streamline in the global coordinate
// system. Search must be performed to find initial cell to start
// integration from.
vtkSetVector3Macro(StartPosition, double);
vtkGetVector3Macro(StartPosition, double);
// Description:
// Specify the source object used to generate starting points.
void SetSourceData(vtkDataSet *source);
vtkDataSet *GetSource();
// Description:
// Specify the source object used to generate starting points (seeds).
// New style.
void SetSourceConnection(vtkAlgorithmOutput* algOutput);
int FillInputPortInformation(int port, vtkInformation* info);
//BTX
enum Units
{
TIME_UNIT,
LENGTH_UNIT,
CELL_LENGTH_UNIT
};
enum Solvers
{
RUNGE_KUTTA2,
RUNGE_KUTTA4,
RUNGE_KUTTA45,
NONE,
UNKNOWN
};
enum ReasonForTermination
{
OUT_OF_DOMAIN = vtkInitialValueProblemSolver::OUT_OF_DOMAIN,
NOT_INITIALIZED = vtkInitialValueProblemSolver::NOT_INITIALIZED ,
UNEXPECTED_VALUE = vtkInitialValueProblemSolver::UNEXPECTED_VALUE,
OUT_OF_TIME = 4,
OUT_OF_STEPS = 5,
STAGNATION = 6
};
//ETX
// Description:
// Set/get the integrator type to be used in the stream line
// calculation. The object passed is not actually used but
// is cloned with NewInstance in the process of integration
// (prototype pattern). The default is 2nd order Runge Kutta.
// The integrator can also be changed using SetIntegratorType.
// The recognized solvers are:
// RUNGE_KUTTA2 = 0
// RUNGE_KUTTA4 = 1
// RUNGE_KUTTA45 = 2
void SetIntegrator(vtkInitialValueProblemSolver *);
vtkGetObjectMacro ( Integrator, vtkInitialValueProblemSolver );
void SetIntegratorType(int type);
int GetIntegratorType();
void SetIntegratorTypeToRungeKutta2()
{this->SetIntegratorType(RUNGE_KUTTA2);};
void SetIntegratorTypeToRungeKutta4()
{this->SetIntegratorType(RUNGE_KUTTA4);};
void SetIntegratorTypeToRungeKutta45()
{this->SetIntegratorType(RUNGE_KUTTA45);};
// Description:
// Specify the maximum length of the streamlines expressed in
// one of the:
// TIME_UNIT = 0
// LENGTH_UNIT = 1
// CELL_LENGTH_UNIT = 2
void SetMaximumPropagation(int unit, double max);
void SetMaximumPropagation(double max);
void SetMaximumPropagationUnit(int unit);
int GetMaximumPropagationUnit();
double GetMaximumPropagation();
void SetMaximumPropagationUnitToTimeUnit()
{this->SetMaximumPropagationUnit(TIME_UNIT);};
void SetMaximumPropagationUnitToLengthUnit()
{this->SetMaximumPropagationUnit(LENGTH_UNIT);};
void SetMaximumPropagationUnitToCellLengthUnit()
{this->SetMaximumPropagationUnit(CELL_LENGTH_UNIT);};
// Description:
// Specify the minimum step used in the integration expressed in
// one of the:
// TIME_UNIT = 0
// LENGTH_UNIT = 1
// CELL_LENGTH_UNIT = 2
// Only valid when using adaptive integrators.
void SetMinimumIntegrationStep(int unit, double step);
void SetMinimumIntegrationStepUnit(int unit);
void SetMinimumIntegrationStep(double step);
int GetMinimumIntegrationStepUnit();
double GetMinimumIntegrationStep();
void SetMinimumIntegrationStepUnitToTimeUnit()
{this->SetMinimumIntegrationStepUnit(TIME_UNIT);};
void SetMinimumIntegrationStepUnitToLengthUnit()
{this->SetMinimumIntegrationStepUnit(LENGTH_UNIT);};
void SetMinimumIntegrationStepUnitToCellLengthUnit()
{this->SetMinimumIntegrationStepUnit(CELL_LENGTH_UNIT);};
// Description:
// Specify the maximum step used in the integration expressed in
// one of the:
// TIME_UNIT = 0
// LENGTH_UNIT = 1
// CELL_LENGTH_UNIT = 2
// Only valid when using adaptive integrators.
void SetMaximumIntegrationStep(int unit, double step);
void SetMaximumIntegrationStepUnit(int unit);
void SetMaximumIntegrationStep(double step);
int GetMaximumIntegrationStepUnit();
double GetMaximumIntegrationStep();
void SetMaximumIntegrationStepUnitToTimeUnit()
{this->SetMaximumIntegrationStepUnit(TIME_UNIT);};
void SetMaximumIntegrationStepUnitToLengthUnit()
{this->SetMaximumIntegrationStepUnit(LENGTH_UNIT);};
void SetMaximumIntegrationStepUnitToCellLengthUnit()
{this->SetMaximumIntegrationStepUnit(CELL_LENGTH_UNIT);};
// Description:
// Specify the initial step used in the integration expressed in
// one of the:
// TIME_UNIT = 0
// LENGTH_UNIT = 1
// CELL_LENGTH_UNIT = 2
// If the integrator is not adaptive, this is the actual
// step used.
void SetInitialIntegrationStep(int unit, double step);
void SetInitialIntegrationStepUnit(int unit);
void SetInitialIntegrationStep(double step);
int GetInitialIntegrationStepUnit();
double GetInitialIntegrationStep();
void SetInitialIntegrationStepUnitToTimeUnit()
{this->SetInitialIntegrationStepUnit(TIME_UNIT);};
void SetInitialIntegrationStepUnitToLengthUnit()
{this->SetInitialIntegrationStepUnit(LENGTH_UNIT);};
void SetInitialIntegrationStepUnitToCellLengthUnit()
{this->SetInitialIntegrationStepUnit(CELL_LENGTH_UNIT);};
// Description
// Specify the maximum error in the integration. This value
// is passed to the integrator. Therefore, it's meaning depends
// on the integrator used.
vtkSetMacro(MaximumError, double);
vtkGetMacro(MaximumError, double);
// Description
// Specify the maximum number of steps used in the integration.
vtkSetMacro(MaximumNumberOfSteps, vtkIdType);
vtkGetMacro(MaximumNumberOfSteps, vtkIdType);
// Description
// If at any point, the speed is below this value, the integration
// is terminated.
vtkSetMacro(TerminalSpeed, double);
vtkGetMacro(TerminalSpeed, double);
// Description:
// Simplified API to set an homogeneous unit across Min/Max/Init IntegrationStepUnit
void SetIntegrationStepUnit(int unit)
{
this->SetInitialIntegrationStepUnit(unit);
this->SetMinimumIntegrationStepUnit(unit);
this->SetMaximumIntegrationStepUnit(unit);
}
//BTX
enum
{
FORWARD,
BACKWARD,
BOTH
};
//ETX
// Description:
// Specify whether the streamtrace will be generated in the
// upstream or downstream direction.
vtkSetClampMacro(IntegrationDirection, int, FORWARD, BOTH);
vtkGetMacro(IntegrationDirection, int);
void SetIntegrationDirectionToForward()
{this->SetIntegrationDirection(FORWARD);};
void SetIntegrationDirectionToBackward()
{this->SetIntegrationDirection(BACKWARD);};
void SetIntegrationDirectionToBoth()
{this->SetIntegrationDirection(BOTH);};
// Description
// Turn on/off calculation of vorticity at streamline points
// (necessary for generating proper streamribbons using the
// vtkRibbonFilter.
vtkSetMacro(ComputeVorticity, int);
vtkGetMacro(ComputeVorticity, int);
vtkBooleanMacro(ComputeVorticity, int);
// Description
// This can be used to scale the rate with which the streamribbons
// twist. The default is 1.
vtkSetMacro(RotationScale, double);
vtkGetMacro(RotationScale, double);
// Description:
// If you want to generate traces using an arbitrary vector array,
// then set its name here. By default this in NULL and the filter will
// use the active vector array.
vtkGetStringMacro(InputVectorsSelection);
void SelectInputVectors(const char *fieldName)
{this->SetInputVectorsSelection(fieldName);}
// Description:
// Add a dataset to the list inputs
void AddInputData(vtkGenericDataSet *in);
// Description:
// The object used to interpolate the velocity field during
// integration is of the same class as this prototype.
void SetInterpolatorPrototype(vtkGenericInterpolatedVelocityField* ivf);
protected:
vtkGenericStreamTracer();
~vtkGenericStreamTracer();
// hide the superclass' AddInput() from the user and the compiler
void AddInput(vtkDataObject *)
{ vtkErrorMacro( << "AddInput() must be called with a vtkGenericDataSet not a vtkDataObject."); };
int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *);
// Description:
// Compute the vorticity at point `pcoords' in cell `cell' for the
// vector attribute `attribute'.
// \pre attribute_exists: attribute!=0
// \pre point_centered_attribute: attribute->GetCentering()==vtkPointCentered
// \pre vector_attribute: attribute->GetType()==vtkDataSetAttributes::VECTORS);
void CalculateVorticity(vtkGenericAdaptorCell* cell,
double pcoords[3],
vtkGenericAttribute *attribute,
double vorticity[3]);
void Integrate(vtkGenericDataSet *input0,
vtkPolyData* output,
vtkDataArray* seedSource,
vtkIdList* seedIds,
vtkIntArray* integrationDirections,
double lastPoint[3],
vtkGenericInterpolatedVelocityField* func);
void SimpleIntegrate(double seed[3],
double lastPoint[3],
double delt,
vtkGenericInterpolatedVelocityField* func);
int CheckInputs(vtkGenericInterpolatedVelocityField*& func,
vtkInformationVector **inputVector);
void GenerateNormals(vtkPolyData* output, double* firstNormal);
int GenerateNormalsInIntegrate;
vtkSetStringMacro(InputVectorsSelection);
char *InputVectorsSelection;
// starting from global x-y-z position
double StartPosition[3];
static const double EPSILON;
double TerminalSpeed;
double LastUsedTimeStep;
//BTX
struct IntervalInformation
{
double Interval;
int Unit;
};
IntervalInformation MaximumPropagation;
IntervalInformation MinimumIntegrationStep;
IntervalInformation MaximumIntegrationStep;
IntervalInformation InitialIntegrationStep;
void SetIntervalInformation(int unit, double interval,
IntervalInformation& currentValues);
void SetIntervalInformation(int unit,IntervalInformation& currentValues);
static double ConvertToTime(IntervalInformation& interval,
double cellLength, double speed);
static double ConvertToLength(IntervalInformation& interval,
double cellLength, double speed);
static double ConvertToCellLength(IntervalInformation& interval,
double cellLength, double speed);
static double ConvertToUnit(IntervalInformation& interval, int unit,
double cellLength, double speed);
void ConvertIntervals(double& step, double& minStep, double& maxStep,
int direction, double cellLength, double speed);
//ETX
void InitializeSeeds(vtkDataArray*& seeds,
vtkIdList*& seedIds,
vtkIntArray*& integrationDirections);
int IntegrationDirection;
// Prototype showing the integrator type to be set by the user.
vtkInitialValueProblemSolver* Integrator;
double MaximumError;
vtkIdType MaximumNumberOfSteps;
int ComputeVorticity;
double RotationScale;
vtkGenericInterpolatedVelocityField* InterpolatorPrototype;
private:
vtkGenericStreamTracer(const vtkGenericStreamTracer&); // Not implemented.
void operator=(const vtkGenericStreamTracer&); // Not implemented.
};
#endif
|