This file is indexed.

/usr/include/paraview/vtkGenericStreamTracer.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkGenericStreamTracer.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkGenericStreamTracer - Streamline generator
// .SECTION Description
// vtkGenericStreamTracer is a filter that integrates a vector field to
// generate streamlines. The integration is performed using the provided
// integrator. The default is second order Runge-Kutta.
//
// vtkGenericStreamTracer generate polylines as output. Each cell (polyline)
// corresponds to one streamline. The values associated with each streamline
// are stored in the cell data whereas the values associated with points
// are stored in point data.
//
// Note that vtkGenericStreamTracer can integrate both forward and backward.
// The length of the streamline is controlled by specifying either
// a maximum value in the units of length, cell length or elapsed time
// (the elapsed time is the time each particle would have traveled if
// flow were steady). Otherwise, the integration terminates after exiting
// the dataset or if the particle speed is reduced to a value less than
// the terminal speed or when a maximum number of steps is reached.
// The reason for the termination is stored in a cell array named
// ReasonForTermination.
//
// The quality of integration can be controlled by setting integration
// step (InitialIntegrationStep) and in the case of adaptive solvers
// the maximum error, the minimum integration step and the maximum
// integration step. All of these can have units of length, cell length
// or elapsed time.
//
// The integration time, vorticity, rotation and angular velocity
// are stored in point arrays named "IntegrationTime", "Vorticity",
// "Rotation" and "AngularVelocity" respectively (vorticity, rotation
// and angular velocity are computed only when ComputeVorticity is on).
// All point attributes in the source data set are interpolated on the
// new streamline points.
//
// vtkGenericStreamTracer integrates through any type of dataset. As a result,
// if the dataset contains 2D cells such as polygons or triangles, the
// integration is constrained to lie on the surface defined by the 2D cells.
//
// The starting point of traces may be defined in two different ways.
// Starting from global x-y-z "position" allows you to start a single trace
// at a specified x-y-z coordinate. If you specify a source object,
// a trace will be generated for each point in the source that is
// inside the dataset.
//
// .SECTION See Also
// vtkRibbonFilter vtkRuledSurfaceFilter vtkInitialValueProblemSolver
// vtkRungeKutta2 vtkRungeKutta4 vtkRungeKutta45

#ifndef vtkGenericStreamTracer_h
#define vtkGenericStreamTracer_h

#include "vtkFiltersGenericModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"

#include "vtkInitialValueProblemSolver.h" // Needed for constants

class vtkDataArray;
class vtkGenericAdaptorCell;
class vtkIdList;
class vtkIntArray;
class vtkGenericInterpolatedVelocityField;
class vtkDataSet;
class vtkGenericAttribute;
class vtkGenericDataSet;

class VTKFILTERSGENERIC_EXPORT vtkGenericStreamTracer : public vtkPolyDataAlgorithm
{
public:
  vtkTypeMacro(vtkGenericStreamTracer,vtkPolyDataAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct object to start from position (0,0,0), integrate forward,
  // terminal speed 1.0E-12, vorticity computation on, integration
  // step length 0.5 (unit cell length), maximum number of steps 2000,
  // using 2nd order Runge Kutta and maximum propagation 1.0 (unit length).
  static vtkGenericStreamTracer *New();

  // Description:
  // Specify the start of the streamline in the global coordinate
  // system. Search must be performed to find initial cell to start
  // integration from.
  vtkSetVector3Macro(StartPosition, double);
  vtkGetVector3Macro(StartPosition, double);

  // Description:
  // Specify the source object used to generate starting points.
  void SetSourceData(vtkDataSet *source);
  vtkDataSet *GetSource();

  // Description:
  // Specify the source object used to generate starting points (seeds).
  // New style.
  void SetSourceConnection(vtkAlgorithmOutput* algOutput);

  int FillInputPortInformation(int port, vtkInformation* info);

//BTX
  enum Units
  {
    TIME_UNIT,
    LENGTH_UNIT,
    CELL_LENGTH_UNIT
  };

  enum Solvers
  {
    RUNGE_KUTTA2,
    RUNGE_KUTTA4,
    RUNGE_KUTTA45,
    NONE,
    UNKNOWN
  };

  enum ReasonForTermination
  {
    OUT_OF_DOMAIN = vtkInitialValueProblemSolver::OUT_OF_DOMAIN,
    NOT_INITIALIZED = vtkInitialValueProblemSolver::NOT_INITIALIZED ,
    UNEXPECTED_VALUE = vtkInitialValueProblemSolver::UNEXPECTED_VALUE,
    OUT_OF_TIME = 4,
    OUT_OF_STEPS = 5,
    STAGNATION = 6
  };
//ETX

  // Description:
  // Set/get the integrator type to be used in the stream line
  // calculation. The object passed is not actually used but
  // is cloned with NewInstance in the process of integration
  // (prototype pattern). The default is 2nd order Runge Kutta.
  // The integrator can also be changed using SetIntegratorType.
  // The recognized solvers are:
  // RUNGE_KUTTA2  = 0
  // RUNGE_KUTTA4  = 1
  // RUNGE_KUTTA45 = 2
  void SetIntegrator(vtkInitialValueProblemSolver *);
  vtkGetObjectMacro ( Integrator, vtkInitialValueProblemSolver );
  void SetIntegratorType(int type);
  int GetIntegratorType();
  void SetIntegratorTypeToRungeKutta2()
    {this->SetIntegratorType(RUNGE_KUTTA2);};
  void SetIntegratorTypeToRungeKutta4()
    {this->SetIntegratorType(RUNGE_KUTTA4);};
  void SetIntegratorTypeToRungeKutta45()
    {this->SetIntegratorType(RUNGE_KUTTA45);};

  // Description:
  // Specify the maximum length of the streamlines expressed in
  // one of the:
  // TIME_UNIT        = 0
  // LENGTH_UNIT      = 1
  // CELL_LENGTH_UNIT = 2
  void SetMaximumPropagation(int unit, double max);
  void SetMaximumPropagation(double max);
  void SetMaximumPropagationUnit(int unit);
  int GetMaximumPropagationUnit();
  double GetMaximumPropagation();
  void SetMaximumPropagationUnitToTimeUnit()
    {this->SetMaximumPropagationUnit(TIME_UNIT);};
  void SetMaximumPropagationUnitToLengthUnit()
    {this->SetMaximumPropagationUnit(LENGTH_UNIT);};
  void SetMaximumPropagationUnitToCellLengthUnit()
    {this->SetMaximumPropagationUnit(CELL_LENGTH_UNIT);};

  // Description:
  // Specify the minimum step used in the integration expressed in
  // one of the:
  // TIME_UNIT        = 0
  // LENGTH_UNIT      = 1
  // CELL_LENGTH_UNIT = 2
  // Only valid when using adaptive integrators.
  void SetMinimumIntegrationStep(int unit, double step);
  void SetMinimumIntegrationStepUnit(int unit);
  void SetMinimumIntegrationStep(double step);
  int GetMinimumIntegrationStepUnit();
  double GetMinimumIntegrationStep();
  void SetMinimumIntegrationStepUnitToTimeUnit()
    {this->SetMinimumIntegrationStepUnit(TIME_UNIT);};
  void SetMinimumIntegrationStepUnitToLengthUnit()
    {this->SetMinimumIntegrationStepUnit(LENGTH_UNIT);};
  void SetMinimumIntegrationStepUnitToCellLengthUnit()
    {this->SetMinimumIntegrationStepUnit(CELL_LENGTH_UNIT);};

  // Description:
  // Specify the maximum step used in the integration expressed in
  // one of the:
  // TIME_UNIT        = 0
  // LENGTH_UNIT      = 1
  // CELL_LENGTH_UNIT = 2
  // Only valid when using adaptive integrators.
  void SetMaximumIntegrationStep(int unit, double step);
  void SetMaximumIntegrationStepUnit(int unit);
  void SetMaximumIntegrationStep(double step);
  int GetMaximumIntegrationStepUnit();
  double GetMaximumIntegrationStep();
  void SetMaximumIntegrationStepUnitToTimeUnit()
    {this->SetMaximumIntegrationStepUnit(TIME_UNIT);};
  void SetMaximumIntegrationStepUnitToLengthUnit()
    {this->SetMaximumIntegrationStepUnit(LENGTH_UNIT);};
  void SetMaximumIntegrationStepUnitToCellLengthUnit()
    {this->SetMaximumIntegrationStepUnit(CELL_LENGTH_UNIT);};

  // Description:
  // Specify the initial step used in the integration expressed in
  // one of the:
  // TIME_UNIT        = 0
  // LENGTH_UNIT      = 1
  // CELL_LENGTH_UNIT = 2
  // If the integrator is not adaptive, this is the actual
  // step used.
  void SetInitialIntegrationStep(int unit, double step);
  void SetInitialIntegrationStepUnit(int unit);
  void SetInitialIntegrationStep(double step);
  int GetInitialIntegrationStepUnit();
  double GetInitialIntegrationStep();
  void SetInitialIntegrationStepUnitToTimeUnit()
    {this->SetInitialIntegrationStepUnit(TIME_UNIT);};
  void SetInitialIntegrationStepUnitToLengthUnit()
    {this->SetInitialIntegrationStepUnit(LENGTH_UNIT);};
  void SetInitialIntegrationStepUnitToCellLengthUnit()
    {this->SetInitialIntegrationStepUnit(CELL_LENGTH_UNIT);};

  // Description
  // Specify the maximum error in the integration. This value
  // is passed to the integrator. Therefore, it's meaning depends
  // on the integrator used.
  vtkSetMacro(MaximumError, double);
  vtkGetMacro(MaximumError, double);

  // Description
  // Specify the maximum number of steps used in the integration.
  vtkSetMacro(MaximumNumberOfSteps, vtkIdType);
  vtkGetMacro(MaximumNumberOfSteps, vtkIdType);

  // Description
  // If at any point, the speed is below this value, the integration
  // is terminated.
  vtkSetMacro(TerminalSpeed, double);
  vtkGetMacro(TerminalSpeed, double);

  // Description:
  // Simplified API to set an homogeneous unit across Min/Max/Init IntegrationStepUnit
  void SetIntegrationStepUnit(int unit)
    {
    this->SetInitialIntegrationStepUnit(unit);
    this->SetMinimumIntegrationStepUnit(unit);
    this->SetMaximumIntegrationStepUnit(unit);
    }

//BTX
  enum
  {
    FORWARD,
    BACKWARD,
    BOTH
  };
//ETX

  // Description:
  // Specify whether the streamtrace will be generated in the
  // upstream or downstream direction.
  vtkSetClampMacro(IntegrationDirection, int, FORWARD, BOTH);
  vtkGetMacro(IntegrationDirection, int);
  void SetIntegrationDirectionToForward()
    {this->SetIntegrationDirection(FORWARD);};
  void SetIntegrationDirectionToBackward()
    {this->SetIntegrationDirection(BACKWARD);};
  void SetIntegrationDirectionToBoth()
    {this->SetIntegrationDirection(BOTH);};

  // Description
  // Turn on/off calculation of vorticity at streamline points
  // (necessary for generating proper streamribbons using the
  // vtkRibbonFilter.
  vtkSetMacro(ComputeVorticity, int);
  vtkGetMacro(ComputeVorticity, int);
  vtkBooleanMacro(ComputeVorticity, int);

  // Description
  // This can be used to scale the rate with which the streamribbons
  // twist. The default is 1.
  vtkSetMacro(RotationScale, double);
  vtkGetMacro(RotationScale, double);

  // Description:
  // If you want to generate traces using an arbitrary vector array,
  // then set its name here. By default this in NULL and the filter will
  // use the active vector array.
  vtkGetStringMacro(InputVectorsSelection);
  void SelectInputVectors(const char *fieldName)
    {this->SetInputVectorsSelection(fieldName);}

  // Description:
  // Add a dataset to the list inputs
  void AddInputData(vtkGenericDataSet *in);

  // Description:
  // The object used to interpolate the velocity field during
  // integration is of the same class as this prototype.
  void SetInterpolatorPrototype(vtkGenericInterpolatedVelocityField* ivf);

protected:
  vtkGenericStreamTracer();
  ~vtkGenericStreamTracer();

  // hide the superclass' AddInput() from the user and the compiler
  void AddInput(vtkDataObject *)
    { vtkErrorMacro( << "AddInput() must be called with a vtkGenericDataSet not a vtkDataObject."); };

  int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *);

  // Description:
  // Compute the vorticity at point `pcoords' in cell `cell' for the
  // vector attribute `attribute'.
  // \pre attribute_exists: attribute!=0
  // \pre  point_centered_attribute: attribute->GetCentering()==vtkPointCentered
  // \pre vector_attribute: attribute->GetType()==vtkDataSetAttributes::VECTORS);
  void CalculateVorticity(vtkGenericAdaptorCell* cell,
                          double pcoords[3],
                          vtkGenericAttribute *attribute,
                          double vorticity[3]);

  void Integrate(vtkGenericDataSet *input0,
                 vtkPolyData* output,
                 vtkDataArray* seedSource,
                 vtkIdList* seedIds,
                 vtkIntArray* integrationDirections,
                 double lastPoint[3],
                 vtkGenericInterpolatedVelocityField* func);
  void SimpleIntegrate(double seed[3],
                       double lastPoint[3],
                       double delt,
                       vtkGenericInterpolatedVelocityField* func);
  int CheckInputs(vtkGenericInterpolatedVelocityField*& func,
    vtkInformationVector **inputVector);
  void GenerateNormals(vtkPolyData* output, double* firstNormal);

  int GenerateNormalsInIntegrate;

  vtkSetStringMacro(InputVectorsSelection);
  char *InputVectorsSelection;


  // starting from global x-y-z position
  double StartPosition[3];

  static const double EPSILON;
  double TerminalSpeed;

  double LastUsedTimeStep;

//BTX
  struct IntervalInformation
  {
    double Interval;
    int Unit;
  };

  IntervalInformation MaximumPropagation;
  IntervalInformation MinimumIntegrationStep;
  IntervalInformation MaximumIntegrationStep;
  IntervalInformation InitialIntegrationStep;

  void SetIntervalInformation(int unit, double interval,
                              IntervalInformation& currentValues);
  void SetIntervalInformation(int unit,IntervalInformation& currentValues);
  static double ConvertToTime(IntervalInformation& interval,
                             double cellLength, double speed);
  static double ConvertToLength(IntervalInformation& interval,
                               double cellLength, double speed);
  static double ConvertToCellLength(IntervalInformation& interval,
                                   double cellLength, double speed);
  static double ConvertToUnit(IntervalInformation& interval, int unit,
                             double cellLength, double speed);
  void ConvertIntervals(double& step, double& minStep, double& maxStep,
                        int direction, double cellLength, double speed);
//ETX

  void InitializeSeeds(vtkDataArray*& seeds,
                       vtkIdList*& seedIds,
                       vtkIntArray*& integrationDirections);

  int IntegrationDirection;

  // Prototype showing the integrator type to be set by the user.
  vtkInitialValueProblemSolver* Integrator;

  double MaximumError;
  vtkIdType MaximumNumberOfSteps;

  int ComputeVorticity;
  double RotationScale;

  vtkGenericInterpolatedVelocityField* InterpolatorPrototype;

private:
  vtkGenericStreamTracer(const vtkGenericStreamTracer&);  // Not implemented.
  void operator=(const vtkGenericStreamTracer&);  // Not implemented.
};

#endif