/usr/include/paraview/vtkGenericCellTessellator.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkGenericCellTessellator.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGenericCellTessellator - helper class to perform cell tessellation
// .SECTION Description
// vtkGenericCellTessellator is a helper class to perform adaptive tessellation
// of particular cell topologies. The major purpose for this class is to
// transform higher-order cell types (e.g., higher-order finite elements)
// into linear cells that can then be easily visualized by VTK. This class
// works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell
// classes.
//
// This algorithm is based on edge subdivision. An error metric along each
// edge is evaluated, and if the error is greater than some tolerance, the
// edge is subdivided (as well as all connected 2D and 3D cells). The process
// repeats until the error metric is satisfied.
//
// A significant issue addressed by this algorithm is to insure face
// compatibility across neigboring cells. That is, diagonals due to face
// triangulation must match to insure that the mesh is compatible. The
// algorithm employs a precomputed table to accelerate the tessellation
// process. The table was generated with the help of vtkOrderedTriangulator;
// the basic idea is that the choice of diagonal is made by considering the
// relative value of the point ids.
#ifndef vtkGenericCellTessellator_h
#define vtkGenericCellTessellator_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"
class vtkCellArray;
class vtkDoubleArray;
class vtkCollection;
class vtkGenericAttributeCollection;
class vtkGenericAdaptorCell;
class vtkGenericCellIterator;
class vtkPointData;
class vtkGenericDataSet;
//-----------------------------------------------------------------------------
//
// The tessellation object
class VTKCOMMONDATAMODEL_EXPORT vtkGenericCellTessellator : public vtkObject
{
public:
vtkTypeMacro(vtkGenericCellTessellator,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Tessellate a face of a 3D `cell'. The face is specified by the
// index value.
// The result is a set of smaller linear triangles in `cellArray' with
// `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==3
// \pre valid_index_range: (index>=0) && (index<cell->GetNumberOfBoundaries(2))
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
virtual void TessellateFace(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkIdType index,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd)=0;
// Description:
// Tessellate a 3D `cell'. The result is a set of smaller linear
// tetrahedra in `cellArray' with `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==3
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
virtual void Tessellate(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd )=0;
// Description:
// Triangulate a 2D `cell'. The result is a set of smaller linear triangles
// in `cellArray' with `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==2
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
virtual void Triangulate(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd)=0;
// Description:
// Specify the list of error metrics used to decide if an edge has to be
// splitted or not. It is a collection of vtkGenericSubdivisionErrorMetric-s.
virtual void SetErrorMetrics(vtkCollection *someErrorMetrics);
vtkGetObjectMacro(ErrorMetrics,vtkCollection);
// Description:
// Initialize the tessellator with a data set `ds'.
virtual void Initialize(vtkGenericDataSet *ds)=0;
// Description:
// Init the error metric with the dataset. Should be called in each filter
// before any tessellation of any cell.
void InitErrorMetrics(vtkGenericDataSet *ds);
// Description:
// If true, measure the quality of the fixed subdivision.
vtkGetMacro(Measurement,int);
vtkSetMacro(Measurement,int);
// Description:
// Get the maximum error measured after the fixed subdivision.
// \pre errors_exists: errors!=0
// \pre valid_size: sizeof(errors)==GetErrorMetrics()->GetNumberOfItems()
void GetMaxErrors(double *errors);
protected:
vtkGenericCellTessellator();
~vtkGenericCellTessellator();
// Description:
// Does the edge need to be subdivided according to at least one error
// metric? The edge is defined by its `leftPoint' and its `rightPoint'.
// `leftPoint', `midPoint' and `rightPoint' have to be initialized before
// calling RequiresEdgeSubdivision().
// Their format is global coordinates, parametric coordinates and
// point centered attributes: xyx rst abc de...
// `alpha' is the normalized abscissa of the midpoint along the edge.
// (close to 0 means close to the left point, close to 1 means close to the
// right point)
// \pre leftPoint_exists: leftPoint!=0
// \pre midPoint_exists: midPoint!=0
// \pre rightPoint_exists: rightPoint!=0
// \pre clamped_alpha: alpha>0 && alpha<1
// \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
// =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
int RequiresEdgeSubdivision(double *left, double *mid, double *right,
double alpha);
// Description:
// Update the max error of each error metric according to the error at the
// mid-point. The type of error depends on the state
// of the concrete error metric. For instance, it can return an absolute
// or relative error metric.
// See RequiresEdgeSubdivision() for a description of the arguments.
// \pre leftPoint_exists: leftPoint!=0
// \pre midPoint_exists: midPoint!=0
// \pre rightPoint_exists: rightPoint!=0
// \pre clamped_alpha: alpha>0 && alpha<1
// \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
// =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
virtual void UpdateMaxError(double *leftPoint, double *midPoint,
double *rightPoint, double alpha);
// Description:
// Reset the maximal error of each error metric. The purpose of the maximal
// error is to measure the quality of a fixed subdivision.
void ResetMaxErrors();
// Description:
// List of error metrics. Collection of vtkGenericSubdivisionErrorMetric
vtkCollection *ErrorMetrics;
// Description:
// Send the current cell to error metrics. Should be called at the beginning
// of the implementation of Tessellate(), Triangulate()
// or TessellateFace()
// \pre cell_exists: cell!=0
void SetGenericCell(vtkGenericAdaptorCell *cell);
vtkGenericDataSet *DataSet;
int Measurement; // if true, measure the quality of the fixed subdivision.
double *MaxErrors; // max error for each error metric, for measuring the
// quality of a fixed subdivision.
int MaxErrorsCapacity;
private:
vtkGenericCellTessellator(const vtkGenericCellTessellator&); // Not implemented.
void operator=(const vtkGenericCellTessellator&); // Not implemented.
};
#endif
|