/usr/include/paraview/vtkFlyingEdges3D.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkFlyingEdges3D.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkFlyingEdges3D - generate isosurface from 3D image data (volume)
// .SECTION Description
// vtkFlyingEdges3D is a reference implementation of the 3D version of the
// flying edges algorithm. It is designed to be highly scalable (i.e.,
// parallelizable) for large data. It implements certain performance
// optimizations including computational trimming to rapidly eliminate
// processing of data regions, packed bit representation of case table
// values, single edge intersection, elimination of point merging, and
// elimination of any reallocs (due to dynamic data insertion). Note that
// computational trimming is a method to reduce total computational cost in
// which partial computational results can be used to eliminate future
// computations.
//
// This is a four-pass algorithm. The first pass processes all x-edges and
// builds x-edge case values (which, when the four x-edges defining a voxel
// are combined, are equivalent to vertex-based case table except edge-based
// approaches are separable in support of parallel computing). Next x-voxel
// rows are processed to gather information from yz-edges (basically to count
// the number of y-z edge intersections and triangles generated). In the third
// pass a prefix sum is used to count and allocate memory for the output
// primitives. Finally in the fourth pass output primitives are generated into
// pre-allocated arrays. This implementation uses voxel cell axes (a x-y-z
// triad located at the voxel origin) to ensure that each edge is intersected
// at most one time. Note that this implementation also reuses the VTK
// Marching Cubes case table, although the vertex-based MC table is
// transformed into an edge-based table on object instantiation.
//
// See the paper "Flying Edges: A High-Performance Scalable Isocontouring
// Algorithm" by Schroeder, Maynard, Geveci. Proc. of LDAV 2015. Chicago, IL.
// .SECTION Caveats
// This filter is specialized to 3D volumes. This implementation can produce
// degenerate triangles (i.e., zero-area triangles).
//
// This class has been threaded with vtkSMPTools. Using TBB or other
// non-sequential type (set in the CMake variable
// VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
// .SECTION See Also
// vtkContourFilter vtkFlyingEdges2D vtkSynchronizedTemplates3D
// vtkMarchingCubes vtkSMPFlyingEdges3D
#ifndef vtkFlyingEdges3D_h
#define vtkFlyingEdges3D_h
#include "vtkFiltersCoreModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
#include "vtkContourValues.h" // Passes calls through
class vtkImageData;
class VTKFILTERSCORE_EXPORT vtkFlyingEdges3D : public vtkPolyDataAlgorithm
{
public:
static vtkFlyingEdges3D *New();
vtkTypeMacro(vtkFlyingEdges3D,vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Because we delegate to vtkContourValues.
unsigned long int GetMTime();
// Description:
// Set/Get the computation of normals. Normal computation is fairly
// expensive in both time and storage. If the output data will be processed
// by filters that modify topology or geometry, it may be wise to turn
// Normals and Gradients off.
vtkSetMacro(ComputeNormals,int);
vtkGetMacro(ComputeNormals,int);
vtkBooleanMacro(ComputeNormals,int);
// Description:
// Set/Get the computation of gradients. Gradient computation is fairly
// expensive in both time and storage. Note that if ComputeNormals is on,
// gradients will have to be calculated, but will not be stored in the
// output dataset. If the output data will be processed by filters that
// modify topology or geometry, it may be wise to turn Normals and
// Gradients off.
vtkSetMacro(ComputeGradients,int);
vtkGetMacro(ComputeGradients,int);
vtkBooleanMacro(ComputeGradients,int);
// Description:
// Set/Get the computation of scalars.
vtkSetMacro(ComputeScalars,int);
vtkGetMacro(ComputeScalars,int);
vtkBooleanMacro(ComputeScalars,int);
// Description:
// Set a particular contour value at contour number i. The index i ranges
// between 0<=i<NumberOfContours.
void SetValue(int i, double value) {this->ContourValues->SetValue(i,value);}
// Description:
// Get the ith contour value.
double GetValue(int i) {return this->ContourValues->GetValue(i);}
// Description:
// Get a pointer to an array of contour values. There will be
// GetNumberOfContours() values in the list.
double *GetValues() {return this->ContourValues->GetValues();}
// Description:
// Fill a supplied list with contour values. There will be
// GetNumberOfContours() values in the list. Make sure you allocate
// enough memory to hold the list.
void GetValues(double *contourValues) {
this->ContourValues->GetValues(contourValues);}
// Description:
// Set the number of contours to place into the list. You only really
// need to use this method to reduce list size. The method SetValue()
// will automatically increase list size as needed.
void SetNumberOfContours(int number) {
this->ContourValues->SetNumberOfContours(number);}
// Description:
// Get the number of contours in the list of contour values.
int GetNumberOfContours() {
return this->ContourValues->GetNumberOfContours();}
// Description:
// Generate numContours equally spaced contour values between specified
// range. Contour values will include min/max range values.
void GenerateValues(int numContours, double range[2]) {
this->ContourValues->GenerateValues(numContours, range);}
// Description:
// Generate numContours equally spaced contour values between specified
// range. Contour values will include min/max range values.
void GenerateValues(int numContours, double rangeStart, double rangeEnd)
{this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);}
// Description:
// Set/get which component of the scalar array to contour on; defaults to 0.
vtkSetMacro(ArrayComponent, int);
vtkGetMacro(ArrayComponent, int);
protected:
vtkFlyingEdges3D();
~vtkFlyingEdges3D();
int ComputeNormals;
int ComputeGradients;
int ComputeScalars;
int ArrayComponent;
vtkContourValues *ContourValues;
virtual int RequestData(vtkInformation *, vtkInformationVector **,
vtkInformationVector *);
virtual int RequestUpdateExtent(vtkInformation *, vtkInformationVector **,
vtkInformationVector *);
virtual int FillInputPortInformation(int port, vtkInformation *info);
private:
vtkFlyingEdges3D(const vtkFlyingEdges3D&); // Not implemented.
void operator=(const vtkFlyingEdges3D&); // Not implemented.
};
#endif
|