This file is indexed.

/usr/include/paraview/vtkDescriptiveStatistics.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkDescriptiveStatistics.h

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/*-------------------------------------------------------------------------
  Copyright 2010 Sandia Corporation.
  Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
  the U.S. Government retains certain rights in this software.
  -------------------------------------------------------------------------*/
// .NAME vtkDescriptiveStatistics - A class for univariate descriptive statistics
//
// .SECTION Description
// Given a selection of columns of interest in an input data table, this
// class provides the following functionalities, depending on the chosen
// execution options:
// * Learn: calculate extremal values, sample mean, and M2, M3, and M4 aggregates
//   (cf. P. Pebay, Formulas for robust, one-pass parallel computation of covariances
//   and Arbitrary-Order Statistical Moments, Sandia Report SAND2008-6212, Sep 2008,
//   http://infoserve.sandia.gov/sand_doc/2008/086212.pdf for details)
// * Derive: calculate unbiased variance estimator, standard deviation estimator,
//   two skewness estimators, and two kurtosis excess estimators.
// * Assess: given an input data set, a reference value and a non-negative deviation,
//   mark each datum with corresponding relative deviation (1-dimensional Mahlanobis
//   distance). If the deviation is zero, then mark each datum which are equal to the
//   reference value with 0, and all others with 1. By default, the reference value
//   and the deviation are, respectively, the mean and the standard deviation of the
//   input model.
// * Test: calculate Jarque-Bera statistic and, if VTK to R interface is available,
//   retrieve corresponding p-value for normality testing.
//
// .SECTION Thanks
// Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories
// for implementing this class.
// Updated by Philippe Pebay, Kitware SAS 2012

#ifndef vtkDescriptiveStatistics_h
#define vtkDescriptiveStatistics_h

#include "vtkFiltersStatisticsModule.h" // For export macro
#include "vtkStatisticsAlgorithm.h"

class vtkMultiBlockDataSet;
class vtkStringArray;
class vtkTable;
class vtkVariant;
class vtkDoubleArray;

class VTKFILTERSSTATISTICS_EXPORT vtkDescriptiveStatistics : public vtkStatisticsAlgorithm
{
public:
  vtkTypeMacro(vtkDescriptiveStatistics, vtkStatisticsAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);
  static vtkDescriptiveStatistics* New();

  // Description:
  // Set/get whether the unbiased estimator for the variance should be used, or if
  // the population variance will be calculated.
  // The default is that the unbiased estimator will be used.
  vtkSetMacro(UnbiasedVariance,int);
  vtkGetMacro(UnbiasedVariance,int);
  vtkBooleanMacro(UnbiasedVariance,int);

  // Description:
  // Set/get whether the G1 estimator for the skewness should be used, or if
  // the g1 skewness will be calculated.
  // The default is that the g1 skewness estimator will be used.
  vtkSetMacro(G1Skewness,int);
  vtkGetMacro(G1Skewness,int);
  vtkBooleanMacro(G1Skewness,int);

  // Description:
  // Set/get whether the G2 estimator for the kurtosis should be used, or if
  // the g2 kurtosis will be calculated.
  // The default is that the g2 kurtosis estimator will be used.
  vtkSetMacro(G2Kurtosis,int);
  vtkGetMacro(G2Kurtosis,int);
  vtkBooleanMacro(G2Kurtosis,int);

  // Description:
  // Set/get whether the deviations returned should be signed, or should
  // only have their magnitude reported.
  // The default is that signed deviations will be computed.
  vtkSetMacro(SignedDeviations,int);
  vtkGetMacro(SignedDeviations,int);
  vtkBooleanMacro(SignedDeviations,int);

  // Description:
  // Given a collection of models, calculate aggregate model
  virtual void Aggregate( vtkDataObjectCollection*,
                          vtkMultiBlockDataSet* );

protected:
  vtkDescriptiveStatistics();
  ~vtkDescriptiveStatistics();

  // Description:
  // Execute the calculations required by the Learn option, given some input Data
  // NB: input parameters are unused.
  virtual void Learn( vtkTable*,
                      vtkTable*,
                      vtkMultiBlockDataSet* );

  // Description:
  // Execute the calculations required by the Derive option.
  virtual void Derive( vtkMultiBlockDataSet* );

  // Description:
  // Execute the calculations required by the Test option.
  virtual void Test( vtkTable*,
                     vtkMultiBlockDataSet*,
                     vtkTable* );

  // Description:
  // Execute the calculations required by the Assess option.
  virtual void Assess( vtkTable* inData,
                       vtkMultiBlockDataSet* inMeta,
                       vtkTable* outData )
  { this->Superclass::Assess( inData, inMeta, outData, 1 ); }

//BTX
  // Description:
  // Calculate p-value. This will be overridden using the object factory with an
  // R implementation if R is present.
  virtual vtkDoubleArray* CalculatePValues(vtkDoubleArray*);

  // Description:
  // Provide the appropriate assessment functor.
  virtual void SelectAssessFunctor( vtkTable* outData,
                                    vtkDataObject* inMeta,
                                    vtkStringArray* rowNames,
                                    AssessFunctor*& dfunc );
//ETX

  int UnbiasedVariance;
  int G1Skewness;
  int G2Kurtosis;
  int SignedDeviations;

private:
  vtkDescriptiveStatistics( const vtkDescriptiveStatistics& ); // Not implemented
  void operator = ( const vtkDescriptiveStatistics& );   // Not implemented
};

#endif