/usr/include/paraview/vtkConstrainedPointHandleRepresentation.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkConstrainedPointHandleRepresentation.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkConstrainedPointHandleRepresentation - point representation constrained to a 2D plane
// .SECTION Description
// This class is used to represent a vtkHandleWidget. It represents a
// position in 3D world coordinates that is constrained to a specified plane.
// The default look is to draw a white point when this widget is not selected
// or active, a thin green circle when it is highlighted, and a thicker cyan
// circle when it is active (being positioned). Defaults can be adjusted - but
// take care to define cursor geometry that makes sense for this widget.
// The geometry will be aligned on the constraining plane, with the plane
// normal aligned with the X axis of the geometry (similar behavior to
// vtkGlyph3D).
//
// TODO: still need to work on
// 1) translation when mouse is outside bounding planes
// 2) size of the widget
//
// .SECTION See Also
// vtkHandleRepresentation vtkHandleWidget
#ifndef vtkConstrainedPointHandleRepresentation_h
#define vtkConstrainedPointHandleRepresentation_h
#include "vtkInteractionWidgetsModule.h" // For export macro
#include "vtkHandleRepresentation.h"
class vtkProperty;
class vtkActor;
class vtkPolyDataMapper;
class vtkPolyData;
class vtkGlyph3D;
class vtkPoints;
class vtkPolyData;
class vtkPlane;
class vtkPlaneCollection;
class vtkPlanes;
class vtkRenderer;
class VTKINTERACTIONWIDGETS_EXPORT vtkConstrainedPointHandleRepresentation : public vtkHandleRepresentation
{
public:
// Description:
// Instantiate this class.
static vtkConstrainedPointHandleRepresentation *New();
// Description:
// Standard methods for instances of this class.
vtkTypeMacro(vtkConstrainedPointHandleRepresentation,vtkHandleRepresentation);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Specify the cursor shape. Keep in mind that the shape will be
// aligned with the constraining plane by orienting it such that
// the x axis of the geometry lies along the normal of the plane.
void SetCursorShape(vtkPolyData *cursorShape);
vtkPolyData *GetCursorShape();
// Description:
// Specify the shape of the cursor (handle) when it is active.
// This is the geometry that will be used when the mouse is
// close to the handle or if the user is manipulating the handle.
void SetActiveCursorShape(vtkPolyData *activeShape);
vtkPolyData *GetActiveCursorShape();
// Description:
// Set the projection normal to lie along the x, y, or z axis,
// or to be oblique. If it is oblique, then the plane is
// defined in the ObliquePlane ivar.
vtkSetClampMacro(ProjectionNormal,int,
vtkConstrainedPointHandleRepresentation::XAxis,
vtkConstrainedPointHandleRepresentation::Oblique);
vtkGetMacro(ProjectionNormal,int);
void SetProjectionNormalToXAxis()
{ this->SetProjectionNormal(vtkConstrainedPointHandleRepresentation::XAxis); }
void SetProjectionNormalToYAxis()
{ this->SetProjectionNormal(vtkConstrainedPointHandleRepresentation::YAxis); }
void SetProjectionNormalToZAxis()
{ this->SetProjectionNormal(vtkConstrainedPointHandleRepresentation::ZAxis); }
void SetProjectionNormalToOblique()
{ this->SetProjectionNormal(vtkConstrainedPointHandleRepresentation::Oblique); }
// Description:
// If the ProjectionNormal is set to Oblique, then this is the
// oblique plane used to constrain the handle position
void SetObliquePlane(vtkPlane *);
vtkGetObjectMacro(ObliquePlane, vtkPlane);
// Description:
// The position of the bounding plane from the origin along the
// normal. The origin and normal are defined in the oblique plane
// when the ProjectionNormal is Oblique. For the X, Y, and Z
// axes projection normals, the normal is the axis direction, and
// the origin is (0,0,0).
void SetProjectionPosition(double position);
vtkGetMacro(ProjectionPosition, double);
// Description:
// A collection of plane equations used to bound the position of the point.
// This is in addition to confining the point to a plane - these constraints
// are meant to, for example, keep a point within the extent of an image.
// Using a set of plane equations allows for more complex bounds (such as
// bounding a point to an oblique reliced image that has hexagonal shape)
// than a simple extent.
void AddBoundingPlane(vtkPlane *plane);
void RemoveBoundingPlane(vtkPlane *plane);
void RemoveAllBoundingPlanes();
virtual void SetBoundingPlanes(vtkPlaneCollection*);
vtkGetObjectMacro(BoundingPlanes,vtkPlaneCollection);
void SetBoundingPlanes(vtkPlanes *planes);
// Description:
// Overridden from the base class. It converts the display
// co-ordinates to world co-ordinates. It returns 1 if the point lies
// within the constrained region, otherwise return 0
virtual int CheckConstraint(vtkRenderer *renderer, double pos[2]);
// Description:
// Set/Get the position of the point in display coordinates. These are
// convenience methods that extend the superclasses' GetHandlePosition()
// method. Note that only the x-y coordinate values are used
void SetPosition(double x, double y, double z);
void SetPosition(double xyz[3]);
double* GetPosition();
void GetPosition(double xyz[3]);
// Description:
// This is the property used when the handle is not active
// (the mouse is not near the handle)
vtkGetObjectMacro(Property,vtkProperty);
// Description:
// This is the property used when the mouse is near the
// handle (but the user is not yet interacting with it)
vtkGetObjectMacro(SelectedProperty,vtkProperty);
// Description:
// This is the property used when the user is interacting
// with the handle.
vtkGetObjectMacro(ActiveProperty,vtkProperty);
// Description:
// Subclasses of vtkConstrainedPointHandleRepresentation must implement these methods. These
// are the methods that the widget and its representation use to
// communicate with each other.
virtual void SetRenderer(vtkRenderer *ren);
virtual void BuildRepresentation();
virtual void StartWidgetInteraction(double eventPos[2]);
virtual void WidgetInteraction(double eventPos[2]);
virtual int ComputeInteractionState(int X, int Y, int modify);
// Description:
// Method overridden from Superclass. computes the world
// co-ordinates using GetIntersectionPosition()
virtual void SetDisplayPosition(double pos[3]);
// Description:
// Methods to make this class behave as a vtkProp.
virtual void GetActors(vtkPropCollection *);
virtual void ReleaseGraphicsResources(vtkWindow *);
virtual int RenderOverlay(vtkViewport *viewport);
virtual int RenderOpaqueGeometry(vtkViewport *viewport);
virtual int RenderTranslucentPolygonalGeometry(vtkViewport *viewport);
virtual int HasTranslucentPolygonalGeometry();
virtual void ShallowCopy(vtkProp* prop);
//BTX
enum {XAxis=0,YAxis,ZAxis,Oblique};
//ETX
void Highlight(int highlight);
protected:
vtkConstrainedPointHandleRepresentation();
~vtkConstrainedPointHandleRepresentation();
// Render the cursor
vtkActor *Actor;
vtkPolyDataMapper *Mapper;
vtkGlyph3D *Glypher;
vtkPolyData *CursorShape;
vtkPolyData *ActiveCursorShape;
vtkPolyData *FocalData;
vtkPoints *FocalPoint;
// Support picking
double LastPickPosition[3];
double LastEventPosition[2];
// Methods to manipulate the cursor
void Translate(double eventPos[2]);
void Scale(double eventPos[2]);
// Properties used to control the appearance of selected objects and
// the manipulator in general.
vtkProperty *Property;
vtkProperty *SelectedProperty;
vtkProperty *ActiveProperty;
void CreateDefaultProperties();
// Controlling vars
int ProjectionNormal;
double ProjectionPosition;
int ProjectToPlane;
vtkPlane *ObliquePlane;
vtkPlaneCollection *BoundingPlanes;
// Internal method for computing 3D location from 2D screen position
int GetIntersectionPosition( double eventPos[2],
double worldPos[3],
double tolerance = 0.0,
vtkRenderer *renderer=0);
// Internal method for getting the project normal as a vector
void GetProjectionNormal( double normal[3] );
// Internal method for getting the origin of the
// constraining plane as a 3-tuple
void GetProjectionOrigin( double origin[3] );
// Distance between where the mouse event happens and where the
// widget is focused - maintain this distance during interaction.
double InteractionOffset[2];
private:
vtkConstrainedPointHandleRepresentation(const vtkConstrainedPointHandleRepresentation&); //Not implemented
void operator=(const vtkConstrainedPointHandleRepresentation&); //Not implemented
};
#endif
|