/usr/include/paraview/vtkCheckerboardSplatter.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkCheckerboardSplatter.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkCheckerboardSplatter - splat points into a volume with an elliptical, Gaussian distribution
// .SECTION Description
// vtkCheckerboardSplatter is a filter that injects input points into a
// structured points (volume) dataset using a multithreaded 8-way
// checkerboard approach. It produces a scalar field of a specified type. As
// each point is injected, it "splats" or distributes values to nearby
// voxels. Data is distributed using an elliptical, Gaussian distribution
// function. The distribution function is modified using scalar values
// (expands distribution) or normals (creates ellipsoidal distribution rather
// than spherical). This algorithm is designed for scalability through
// multithreading.
//
// In general, the Gaussian distribution function f(x) around a given
// splat point p is given by
//
// f(x) = ScaleFactor * exp( ExponentFactor*((r/Radius)**2) )
//
// where x is the current voxel sample point; r is the distance |x-p|
// ExponentFactor <= 0.0, and ScaleFactor can be multiplied by the scalar
// value of the point p that is currently being splatted.
//
// If point normals are present (and NormalWarping is on), then the splat
// function becomes elliptical (as compared to the spherical one described
// by the previous equation). The Gaussian distribution function then
// becomes:
//
// f(x) = ScaleFactor *
// exp( ExponentFactor*( ((rxy/E)**2 + z**2)/R**2) )
//
// where E is a user-defined eccentricity factor that controls the elliptical
// shape of the splat; z is the distance of the current voxel sample point
// along normal N; and rxy is the distance of x in the direction
// prependicular to N.
//
// This class is typically used to convert point-valued distributions into
// a volume representation. The volume is then usually iso-surfaced or
// volume rendered to generate a visualization. It can be used to create
// surfaces from point distributions, or to create structure (i.e.,
// topology) when none exists.
//
// This class makes use of vtkSMPTools to implement a parallel, shared-memory
// implementation. Hence performance will be significantly improved if VTK is
// built with VTK_SMP_IMPLEMENTATION_TYPE set to something other than
// "Sequential" (typically TBB). For example, on a standard laptop with four
// threads it is common to see a >10x speedup as compared to the serial
// version of vtkGaussianSplatter.
//
// In summary, the algorithm operates by dividing the volume into a 3D
// checkerboard, where the squares of the checkerboard overlay voxels in the
// volume. The checkerboard overlay is designed as a function of the splat
// footprint, so that when splatting occurs in a group (or color) of
// checkerboard squares, the splat operation will not cause write contention
// as the splatting proceeds in parallel. There are eight colors in this
// checkerboard (like an octree) and parallel splatting occurs simultaneously
// in one of the eight colors (e.g., octants). A single splat operation
// (across the given 3D footprint) may also be parallelized if the splat is
// large enough.
// .SECTION Caveats
// The input to this filter is of type vtkPointSet. Currently only real types
// (e.g., float, double) are supported as input, but this could easily be
// extended to other types. The output type is limited to real types as well.
//
// Some voxels may never receive a contribution during the splatting process.
// The final value of these points can be specified with the "NullValue"
// instance variable. Note that NullValue is also the initial value of the
// output voxel values and will affect the accumulation process.
//
// While this class is very similar to vtkGaussianSplatter, it does produce
// slightly different output in most cases (due to the way the footprint is
// computed).
// .SECTION See Also
// vtkShepardMethod vtkGaussianSplatter
#ifndef vtkCheckerboardSplatter_h
#define vtkCheckerboardSplatter_h
#include "vtkImagingHybridModule.h" // For export macro
#include "vtkImageAlgorithm.h"
#define VTK_ACCUMULATION_MODE_MIN 0
#define VTK_ACCUMULATION_MODE_MAX 1
#define VTK_ACCUMULATION_MODE_SUM 2
class vtkDoubleArray;
class vtkCompositeDataSet;
class VTKIMAGINGHYBRID_EXPORT vtkCheckerboardSplatter : public vtkImageAlgorithm
{
public:
vtkTypeMacro(vtkCheckerboardSplatter,vtkImageAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct object with dimensions=(50,50,50); automatic computation of
// bounds; a Footprint of 2; a Radius of 0; an exponent factor of -5; and normal and
// scalar warping enabled; and Capping enabled.
static vtkCheckerboardSplatter *New();
// Description:
// Set / get the dimensions of the sampling structured point set. Higher
// values produce better results but may be much slower.
void SetSampleDimensions(int i, int j, int k);
void SetSampleDimensions(int dim[3]);
vtkGetVectorMacro(SampleDimensions,int,3);
// Description:
// Set / get the (xmin,xmax, ymin,ymax, zmin,zmax) bounding box in which
// the sampling is performed. If any of the (min,max) bounds values are
// min >= max, then the bounds will be computed automatically from the input
// data. Otherwise, the user-specified bounds will be used.
vtkSetVector6Macro(ModelBounds,double);
vtkGetVectorMacro(ModelBounds,double,6);
// Description:
// Control the footprint size of the splat in terms of propagation across a
// voxel neighborhood. The Footprint value simply indicates the number of
// neigboring voxels in the i-j-k directions to extend the splat. A value
// of zero means that only the voxel containing the splat point is
// affected. A value of one means the immediate neighbors touching the
// affected voxel are affected as well. Larger numbers increase the splat
// footprint and significantly increase processing time. Note that the
// footprint is always 3D rectangular.
vtkSetClampMacro(Footprint,int,0,VTK_INT_MAX);
vtkGetMacro(Footprint,int);
// Description:
// Set / get the radius variable that controls the Gaussian exponential
// function (see equation above). If set to zero, it is automatically set
// to the radius of the circumsphere bounding a single voxel. (By default,
// the Radius is set to zero and is automatically computed.)
vtkSetClampMacro(Radius,double,0.0,VTK_DOUBLE_MAX);
vtkGetMacro(Radius,double);
// Description:
// Multiply Gaussian splat distribution by this value. If ScalarWarping
// is on, then the Scalar value will be multiplied by the ScaleFactor
// times the Gaussian function.
vtkSetClampMacro(ScaleFactor,double,0.0,VTK_DOUBLE_MAX);
vtkGetMacro(ScaleFactor,double);
// Description:
// Set / get the sharpness of decay of the splats. This is the exponent
// constant in the Gaussian equation described above. Normally this is a
// negative value.
vtkSetMacro(ExponentFactor,double);
vtkGetMacro(ExponentFactor,double);
// Description:
// Turn on/off the scaling of splats by scalar value.
vtkSetMacro(ScalarWarping,int);
vtkGetMacro(ScalarWarping,int);
vtkBooleanMacro(ScalarWarping,int);
// Description:
// Turn on/off the generation of elliptical splats. If normal warping is
// on, then the input normals affect the distribution of the splat. This
// boolean is used in combination with the Eccentricity ivar.
vtkSetMacro(NormalWarping,int);
vtkGetMacro(NormalWarping,int);
vtkBooleanMacro(NormalWarping,int);
// Description:
// Control the shape of elliptical splatting. Eccentricity is the ratio
// of the major axis (aligned along normal) to the minor (axes) aligned
// along other two axes. So Eccentricity > 1 creates needles with the
// long axis in the direction of the normal; Eccentricity<1 creates
// pancakes perpendicular to the normal vector.
vtkSetClampMacro(Eccentricity,double,0.001,VTK_DOUBLE_MAX);
vtkGetMacro(Eccentricity,double);
// Description:
// Specify the scalar accumulation mode. This mode expresses how scalar
// values are combined when splats overlap one another. The Max mode acts
// like a set union operation and is the most commonly used; the Min mode
// acts like a set intersection, and the sum is just weird (and can
// potentially cause accumulation overflow in extreme cases). Note that the
// NullValue must be set consistent with the accumulation operation.
vtkSetClampMacro(AccumulationMode,int,
VTK_ACCUMULATION_MODE_MIN,VTK_ACCUMULATION_MODE_SUM);
vtkGetMacro(AccumulationMode,int);
void SetAccumulationModeToMin()
{this->SetAccumulationMode(VTK_ACCUMULATION_MODE_MIN);}
void SetAccumulationModeToMax()
{this->SetAccumulationMode(VTK_ACCUMULATION_MODE_MAX);}
void SetAccumulationModeToSum()
{this->SetAccumulationMode(VTK_ACCUMULATION_MODE_SUM);}
const char *GetAccumulationModeAsString();
// Description:
// Set what type of scalar data this source should generate. Only double
// and float types are supported currently due to precision requirements
// during accumulation. By default, float scalars are produced.
vtkSetMacro(OutputScalarType,int);
vtkGetMacro(OutputScalarType,int);
void SetOutputScalarTypeToDouble()
{this->SetOutputScalarType(VTK_DOUBLE);}
void SetOutputScalarTypeToFloat()
{this->SetOutputScalarType(VTK_FLOAT);}
// Description:
// Turn on/off the capping of the outer boundary of the volume
// to a specified cap value. This can be used to close surfaces
// (after iso-surfacing) and create other effects.
vtkSetMacro(Capping,int);
vtkGetMacro(Capping,int);
vtkBooleanMacro(Capping,int);
// Description:
// Specify the cap value to use. (This instance variable only has effect
// if the ivar Capping is on.)
vtkSetMacro(CapValue,double);
vtkGetMacro(CapValue,double);
// Description:
// Set the Null value for output points not receiving a contribution from
// the input points. (This is the initial value of the voxel samples, by
// default it is set to zero.) Note that the value should be consistent
// with the output dataset type. The NullValue also provides the initial
// value on which the accumulations process operates.
vtkSetMacro(NullValue,double);
vtkGetMacro(NullValue,double);
// Description:
// Set/Get the maximum dimension of the checkerboard (i.e., the number of
// squares in any of the i, j, or k directions). This number also impacts
// the granularity of the parallel threading (since each checker square is
// processed separaely). Because of the internal addressing, the maximum
// dimension is limited to 255 (maximum value of an unsigned char).
vtkSetClampMacro(MaximumDimension,int,0,255);
vtkGetMacro(MaximumDimension,int);
// Description:
// Set/get the crossover point expressed in footprint size where the
// splatting operation is parallelized (through vtkSMPTools). By default
// the parallel crossover point is for splat footprints of size two or
// greater (i.e., at footprint=2 then splat is 5x5x5 and parallel splatting
// occurs). This is really meant for experimental purposes.
vtkSetClampMacro(ParallelSplatCrossover,int,0,255);
vtkGetMacro(ParallelSplatCrossover,int);
// Description:
// Compute the size of the sample bounding box automatically from the
// input data. This is an internal helper function.
void ComputeModelBounds(vtkDataSet *input, vtkImageData *output,
vtkInformation *outInfo);
protected:
vtkCheckerboardSplatter();
~vtkCheckerboardSplatter() {}
virtual int FillInputPortInformation(int port, vtkInformation* info);
virtual int RequestInformation (vtkInformation *,
vtkInformationVector **,
vtkInformationVector *);
virtual int RequestData(vtkInformation *,
vtkInformationVector **,
vtkInformationVector *);
int OutputScalarType; //the type of output scalars
int SampleDimensions[3]; // dimensions of volume to splat into
double Radius; // Radius factor in the Gaussian exponential function
int Footprint; // maximum distance splat propagates (in voxels 0->Dim)
double ExponentFactor; // scale exponent of gaussian function
double ModelBounds[6]; // bounding box of splatting dimensions
double Origin[3], Spacing[3]; // output geometry
int NormalWarping; // on/off warping of splat via normal
double Eccentricity;// elliptic distortion due to normals
int ScalarWarping; // on/off warping of splat via scalar
double ScaleFactor; // splat size influenced by scale factor
int Capping; // Cap side of volume to close surfaces
double CapValue; // value to use for capping
int AccumulationMode; // how to combine scalar values
double NullValue; // initial value of voxels
unsigned char MaximumDimension; // max resolution of checkerboard
int ParallelSplatCrossover; //the point at which parallel splatting occurs
private:
vtkCheckerboardSplatter(const vtkCheckerboardSplatter&); // Not implemented.
void operator=(const vtkCheckerboardSplatter&); // Not implemented.
};
#endif
|