This file is indexed.

/usr/include/paraview/vtkCamera.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkCamera.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkCamera - a virtual camera for 3D rendering
// .SECTION Description
// vtkCamera is a virtual camera for 3D rendering. It provides methods
// to position and orient the view point and focal point. Convenience
// methods for moving about the focal point also are provided. More
// complex methods allow the manipulation of the computer graphics
// model including view up vector, clipping planes, and
// camera perspective.
// .SECTION See Also
// vtkPerspectiveTransform

#ifndef vtkCamera_h
#define vtkCamera_h

#include "vtkRenderingCoreModule.h" // For export macro
#include "vtkObject.h"
#include "vtkRect.h" // for ivar

class vtkHomogeneousTransform;
class vtkMatrix4x4;
class vtkPerspectiveTransform;
class vtkRenderer;
class vtkTransform;
class vtkCallbackCommand;
class vtkCameraCallbackCommand;

class VTKRENDERINGCORE_EXPORT vtkCamera : public vtkObject
{
public:
  vtkTypeMacro(vtkCamera, vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct camera instance with its focal point at the origin,
  // and position=(0,0,1). The view up is along the y-axis,
  // view angle is 30 degrees, and the clipping range is (.1,1000).
  static vtkCamera *New();

  // Description:
  // Set/Get the position of the camera in world coordinates.
  // The default position is (0,0,1).
  void SetPosition(double x, double y, double z);
  void SetPosition(const double a[3]) {
    this->SetPosition(a[0], a[1], a[2]); };
  vtkGetVector3Macro(Position, double);

  // Description:
  // Set/Get the focal of the camera in world coordinates.
  // The default focal point is the origin.
  void SetFocalPoint(double x, double y, double z);
  void SetFocalPoint(const double a[3]) {
    this->SetFocalPoint(a[0], a[1], a[2]);};
  vtkGetVector3Macro(FocalPoint, double);

  // Description:
  // Set/Get the view up direction for the camera.  The default
  // is (0,1,0).
  void SetViewUp(double vx, double vy, double vz);
  void SetViewUp(const double a[3]) {
    this->SetViewUp(a[0], a[1], a[2]); }
  vtkGetVector3Macro(ViewUp, double);

  // Description:
  // Recompute the ViewUp vector to force it to be perpendicular to
  // camera->focalpoint vector.  Unless you are going to use
  // Yaw or Azimuth on the camera, there is no need to do this.
  void OrthogonalizeViewUp();

  // Description:
  // Move the focal point so that it is the specified distance from
  // the camera position.  This distance must be positive.
  void SetDistance(double);

  // Description:
  // Return the distance from the camera position to the focal point.
  // This distance is positive.
  vtkGetMacro(Distance, double);

  // Description:
  // Get the vector in the direction from the camera position to the
  // focal point.  This is usually the opposite of the ViewPlaneNormal,
  // the vector perpendicular to the screen, unless the view is oblique.
  vtkGetVector3Macro(DirectionOfProjection, double);

  // Description:
  // Divide the camera's distance from the focal point by the given
  // dolly value.  Use a value greater than one to dolly-in toward
  // the focal point, and use a value less than one to dolly-out away
  // from the focal point.
  void Dolly(double value);

  // Description:
  // Set the roll angle of the camera about the direction of projection.
  void SetRoll(double angle);
  double GetRoll();

  // Description:
  // Rotate the camera about the direction of projection.  This will
  // spin the camera about its axis.
  void Roll(double angle);

  // Description:
  // Rotate the camera about the view up vector centered at the focal point.
  // Note that the view up vector is whatever was set via SetViewUp, and is
  // not necessarily perpendicular to the direction of projection.  The
  // result is a horizontal rotation of the camera.
  void Azimuth(double angle);

  // Description:
  // Rotate the focal point about the view up vector, using the camera's
  // position as the center of rotation. Note that the view up vector is
  // whatever was set via SetViewUp, and is not necessarily perpendicular
  // to the direction of projection.  The result is a horizontal rotation
  // of the scene.
  void Yaw(double angle);

  // Description:
  // Rotate the camera about the cross product of the negative of the
  // direction of projection and the view up vector, using the focal point
  // as the center of rotation.  The result is a vertical rotation of the
  // scene.
  void Elevation(double angle);

  // Description:
  // Rotate the focal point about the cross product of the view up vector
  // and the direction of projection, using the camera's position as the
  // center of rotation.  The result is a vertical rotation of the camera.
  void Pitch(double angle);

  // Description:
  // Set/Get the value of the ParallelProjection instance variable. This
  // determines if the camera should do a perspective or parallel projection.
  void SetParallelProjection(int flag);
  vtkGetMacro(ParallelProjection, int);
  vtkBooleanMacro(ParallelProjection, int);

  // Description:
  // Set/Get the value of the UseHorizontalViewAngle instance variable. If
  // set, the camera's view angle represents a horizontal view angle, rather
  // than the default vertical view angle. This is useful if the application
  // uses a display device which whose specs indicate a particular horizontal
  // view angle, or if the application varies the window height but wants to
  // keep the perspective transform unchanges.
  void SetUseHorizontalViewAngle(int flag);
  vtkGetMacro(UseHorizontalViewAngle, int);
  vtkBooleanMacro(UseHorizontalViewAngle, int);

  // Description:
  // Set/Get the camera view angle, which is the angular height of the
  // camera view measured in degrees.  The default angle is 30 degrees.
  // This method has no effect in parallel projection mode.
  // The formula for setting the angle up for perfect perspective viewing
  // is: angle = 2*atan((h/2)/d) where h is the height of the RenderWindow
  // (measured by holding a ruler up to your screen) and d is the
  // distance from your eyes to the screen.
  void SetViewAngle(double angle);
  vtkGetMacro(ViewAngle, double);

  // Description:
  // Set/Get the scaling used for a parallel projection, i.e. the height
  // of the viewport in world-coordinate distances. The default is 1.
  // Note that the "scale" parameter works as an "inverse scale" ---
  // larger numbers produce smaller images.
  // This method has no effect in perspective projection mode.
  void SetParallelScale(double scale);
  vtkGetMacro(ParallelScale ,double);

  // Description:
  // In perspective mode, decrease the view angle by the specified factor.
  // In parallel mode, decrease the parallel scale by the specified factor.
  // A value greater than 1 is a zoom-in, a value less than 1 is a zoom-out.
  void Zoom(double factor);

  // Description:
  // Set/Get the location of the near and far clipping planes along the
  // direction of projection.  Both of these values must be positive.
  // How the clipping planes are set can have a large impact on how
  // well z-buffering works.  In particular the front clipping
  // plane can make a very big difference. Setting it to 0.01 when it
  // really could be 1.0 can have a big impact on your z-buffer resolution
  // farther away.  The default clipping range is (0.1,1000).
  // Clipping distance is measured in world coordinate unless a scale factor
  // exists in camera's ModelTransformMatrix.
  void SetClippingRange(double dNear, double dFar);
  void SetClippingRange(const double a[2])
    { this->SetClippingRange(a[0], a[1]); }
  vtkGetVector2Macro(ClippingRange, double);

  // Description:
  // Set the distance between clipping planes.  This method adjusts the
  // far clipping plane to be set a distance 'thickness' beyond the
  // near clipping plane.
  void SetThickness(double);
  vtkGetMacro(Thickness, double);

  // Description:
  // Set/Get the center of the window in viewport coordinates.
  // The viewport coordinate range is ([-1,+1],[-1,+1]).  This method
  // is for if you have one window which consists of several viewports,
  // or if you have several screens which you want to act together as
  // one large screen.
  void SetWindowCenter(double x, double y);
  vtkGetVector2Macro(WindowCenter, double);

  // Description:
  // Get/Set the oblique viewing angles.  The first angle, alpha, is the
  // angle (measured from the horizontal) that rays along the direction
  // of projection will follow once projected onto the 2D screen.
  // The second angle, beta, is the angle between the view plane and
  // the direction of projection.  This creates a shear transform
  // x' = x + dz*cos(alpha)/tan(beta), y' = dz*sin(alpha)/tan(beta)
  // where dz is the distance of the point from the focal plane.
  // The angles are (45,90) by default.  Oblique projections
  // commonly use (30,63.435).
  void SetObliqueAngles(double alpha, double beta);

  // Description:
  // Apply a transform to the camera.  The camera position, focal-point,
  // and view-up are re-calculated using the transform's matrix to
  // multiply the old points by the new transform.
  void ApplyTransform(vtkTransform *t);

  // Description:
  // Get the ViewPlaneNormal.  This vector will point opposite to
  // the direction of projection, unless you have created a sheared output
  // view using SetViewShear/SetObliqueAngles.
  vtkGetVector3Macro(ViewPlaneNormal, double);

  // Description:
  // Set/get the shear transform of the viewing frustum.  Parameters are
  // dx/dz, dy/dz, and center.  center is a factor that describes where
  // to shear around. The distance dshear from the camera where
  // no shear occurs is given by (dshear = center * FocalDistance).
  void SetViewShear(double dxdz, double dydz, double center);
  void SetViewShear(double d[3]);
  vtkGetVector3Macro(ViewShear, double);

  // Description:
  // Set/Get the separation between eyes (in degrees). This is used
  // when generating stereo images.
  vtkSetMacro(EyeAngle, double);
  vtkGetMacro(EyeAngle, double);

  // Description:
  // Set the size of the cameras lens in world coordinates. This is only
  // used when the renderer is doing focal depth rendering. When that is
  // being done the size of the focal disk will effect how significant the
  // depth effects will be.
  vtkSetMacro(FocalDisk, double);
  vtkGetMacro(FocalDisk, double);

  // Description:
  // Set/Get use offaxis frustum.
  // OffAxis frustum is used for off-axis frustum calculations specificly
  // for stereo rendering.
  // For reference see "High Resolution Virtual Reality", in Proc.
  // SIGGRAPH '92, Computer Graphics, pages 195-202, 1992.
  vtkSetMacro(UseOffAxisProjection, int);
  vtkGetMacro(UseOffAxisProjection, int);
  vtkBooleanMacro(UseOffAxisProjection, int);

  // Description:
  // Set/Get top left corner point of the screen.
  // This will be used only for offaxis frustum calculation.
  // Default is (-1.0, -1.0, -1.0).
  vtkSetVector3Macro(ScreenBottomLeft, double);
  vtkGetVector3Macro(ScreenBottomLeft, double);

  // Description:
  // Set/Get bottom left corner point of the screen.
  // This will be used only for offaxis frustum calculation.
  // Default is (1.0, -1.0, -1.0).
  vtkSetVector3Macro(ScreenBottomRight, double);
  vtkGetVector3Macro(ScreenBottomRight, double);

  // Description:
  // Set/Get top right corner point of the screen.
  // This will be used only for offaxis frustum calculation.
  // Default is (1.0, 1.0, -1.0).
  vtkSetVector3Macro(ScreenTopRight, double);
  vtkGetVector3Macro(ScreenTopRight, double);

  // Description:
  // Set/Get distance between the eyes.
  // This will be used only for offaxis frustum calculation.
  // Default is 0.06.
  vtkSetMacro(EyeSeparation, double);
  vtkGetMacro(EyeSeparation, double);

  // Description:
  // Set/Get the eye position (center point between two eyes).
  // This is a convenience function that sets the translation
  // component of EyeTransformMatrix.
  // This will be used only for offaxis frustum calculation.
  void SetEyePosition(double eyePosition[3]);
  void GetEyePosition(double eyePosition[3]);

  // Description:
  // Get normal vector from eye to screen rotated by EyeTransformMatrix.
  // This will be used only for offaxis frustum calculation.
  void GetEyePlaneNormal(double normal[3]);

  // Description:
  // Set/Get eye transformation matrix.
  // This is the transformation matrix for the point between eyes.
  // This will be used only for offaxis frustum calculation.
  // Default is identity.
  void SetEyeTransformMatrix(vtkMatrix4x4* matrix);
  vtkGetObjectMacro(EyeTransformMatrix, vtkMatrix4x4);

  // Description:
  // Set the eye transform matrix.
  // This is the transformation matrix for the point between eyes.
  // This will be used only for offaxis frustum calculation.
  // Default is identity.
  void SetEyeTransformMatrix(const double elements[16]);

  // Description:
  // Set/Get model transformation matrix.
  // This matrix could be used for model related transformations
  // such as scale, shear, roations and translations.
  void SetModelTransformMatrix(vtkMatrix4x4 *matrix);
  vtkGetObjectMacro(ModelTransformMatrix, vtkMatrix4x4);

  // Description:
  // Set model transformation matrix.
  // This matrix could be used for model related transformations
  // such as scale, shear, roations and translations.
  void SetModelTransformMatrix(const double elements[16]);

  // Description:
  // Return the model view matrix of model view transform.
  virtual vtkMatrix4x4 *GetModelViewTransformMatrix();

  // Description:
  // Return the model view transform.
  virtual vtkTransform *GetModelViewTransformObject();

  // Description:
  // For backward compatibility. Use GetModelViewTransformMatrix() now.
  // Return the matrix of the view transform.
  // The ViewTransform depends on only three ivars:  the Position, the
  // FocalPoint, and the ViewUp vector.  All the other methods are there
  // simply for the sake of the users' convenience.
  virtual vtkMatrix4x4 *GetViewTransformMatrix();

  // Description:
  // For backward compatibility. Use GetModelViewTransformObject() now.
  // Return the view transform.
  // If the camera's ModelTransformMatrix is identity then
  // the ViewTransform depends on only three ivars:
  // the Position, the FocalPoint, and the ViewUp vector.
  // All the other methods are there simply for the sake of the users'
  // convenience.
  virtual vtkTransform *GetViewTransformObject();

  // Description:
  // Return the projection transform matrix, which converts from camera
  // coordinates to viewport coordinates.  The 'aspect' is the
  // width/height for the viewport, and the nearz and farz are the
  // Z-buffer values that map to the near and far clipping planes.
  // The viewport coordinates of a point located inside the frustum are in the
  // range ([-1,+1],[-1,+1],[nearz,farz]).
   virtual vtkMatrix4x4 *GetProjectionTransformMatrix(double aspect,
                                                      double nearz,
                                                      double farz);

  // Description:
  // Return the projection transform matrix, which converts from camera
  // coordinates to viewport coordinates. The 'aspect' is the
  // width/height for the viewport, and the nearz and farz are the
  // Z-buffer values that map to the near and far clipping planes.
  // The viewport coordinates of a point located inside the frustum are in the
  // range ([-1,+1],[-1,+1],[nearz,farz]).
  virtual vtkPerspectiveTransform *GetProjectionTransformObject(double aspect,
                                                                double nearz,
                                                                double farz);

  // Description:
  // Return the concatenation of the ViewTransform and the
  // ProjectionTransform. This transform will convert world
  // coordinates to viewport coordinates. The 'aspect' is the
  // width/height for the viewport, and the nearz and farz are the
  // Z-buffer values that map to the near and far clipping planes.
  // The viewport coordinates of a point located inside the frustum are in the
  // range ([-1,+1],[-1,+1],[nearz,farz]).
  virtual vtkMatrix4x4 *GetCompositeProjectionTransformMatrix(double aspect,
                                                              double nearz,
                                                              double farz);

  // Description:
  // Return the projection transform matrix, which converts from camera
  // coordinates to viewport coordinates. This method computes
  // the aspect, nearz and farz, then calls the more specific
  // signature of GetCompositeProjectionTransformMatrix
  virtual vtkMatrix4x4 *GetProjectionTransformMatrix(vtkRenderer *ren);

  // Description:
  // In addition to the instance variables such as position and orientation,
  // you can add an additional transformation for your own use.  This
  // transformation is concatenated to the camera's ViewTransform
  void SetUserViewTransform(vtkHomogeneousTransform *transform);
  vtkGetObjectMacro(UserViewTransform,vtkHomogeneousTransform);

  // Description:
  // In addition to the instance variables such as position and orientation,
  // you can add an additional transformation for your own use. This
  // transformation is concatenated to the camera's ProjectionTransform
  void SetUserTransform(vtkHomogeneousTransform *transform);
  vtkGetObjectMacro(UserTransform,vtkHomogeneousTransform);

  // Description:
  // This method causes the camera to set up whatever is required for
  // viewing the scene. This is actually handled by an subclass of
  // vtkCamera, which is created through New()
  virtual void Render(vtkRenderer *) {}

  // Description:
  // Return the MTime that concerns recomputing the view rays of the camera.
  unsigned long GetViewingRaysMTime();

  // Description:
  // Mark that something has changed which requires the view rays
  // to be recomputed.
  void ViewingRaysModified();

  // Description:
  // Get the plane equations that bound the view frustum.
  // The plane normals point inward. The planes array contains six
  // plane equations of the form (Ax+By+Cz+D=0), the first four
  // values are (A,B,C,D) which repeats for each of the planes.
  // The planes are given in the following order: -x,+x,-y,+y,-z,+z.
  // Warning: it means left,right,bottom,top,far,near (NOT near,far)
  // The aspect of the viewport is needed to correctly compute the planes
  virtual void GetFrustumPlanes(double aspect, double planes[24]);

  // Description:
  // Get the orientation of the camera.
  double *GetOrientation();
  double *GetOrientationWXYZ();

  // Description:
  // This method is called automatically whenever necessary, it
  // should never be used outside of vtkCamera.cxx.
  void ComputeViewPlaneNormal();

  // Description:
  // Returns a transformation matrix for a coordinate frame attached to
  // the camera, where the camera is located at (0, 0, 1) looking at the
  // focal point at (0, 0, 0), with up being (0, 1, 0).
  vtkMatrix4x4 *GetCameraLightTransformMatrix();

  // Description:
  // Update the viewport
  virtual void UpdateViewport(vtkRenderer *vtkNotUsed(ren)) {}

  // Description:
  // Set the Left Eye setting
  vtkSetMacro(LeftEye, int);
  vtkGetMacro(LeftEye, int);

  // Description:
  // Copy the properties of `source' into `this'.
  // Copy pointers of matrices.
  // \pre source_exists!=0
  // \pre not_this: source!=this
  void ShallowCopy(vtkCamera *source);

  // Description:
  // Copy the properties of `source' into `this'.
  // Copy the contents of the matrices.
  // \pre source_exists!=0
  // \pre not_this: source!=this
  void DeepCopy(vtkCamera *source);

  // Description:
  // Set/Get the value of the FreezeDolly instance variable. This
  // determines if the camera should move the focal point with the camera position.
  // HACK!!!
  vtkSetMacro(FreezeFocalPoint, bool);
  vtkGetMacro(FreezeFocalPoint, bool);

  // Description:
  // Enable/Disable the scissor
  vtkSetMacro(UseScissor, bool);
  vtkGetMacro(UseScissor, bool);

  // Description:
  // Set/Get the vtkRect value of the scissor
  void SetScissorRect(vtkRecti scissorRect);
  void GetScissorRect(vtkRecti& scissorRect);

protected:
  vtkCamera();
  ~vtkCamera();

  // Description:
  // These methods should only be used within vtkCamera.cxx.
  void ComputeDistance();
  virtual void ComputeViewTransform();

  // Description:
  // These methods should only be used within vtkCamera.cxx.
  virtual void ComputeProjectionTransform(double aspect,
                                          double nearz,
                                          double farz);

  // Description:
  // These methods should only be used within vtkCamera.cxx.
  void ComputeCompositeProjectionTransform(double aspect,
                                           double nearz,
                                           double farz);

  void ComputeCameraLightTransform();


  // Description:
  // Given screen screen top, bottom left and top right
  // calculate screen rotation.
  void ComputeWorldToScreenMatrix();

  // Description:
  // Compute and use frustum using offaxis method.
  void ComputeOffAxisProjectionFrustum();

  // Description:
  // Compute model view matrix for the camera.
  void ComputeModelViewMatrix();

  // Description:
  // Copy the ivars. Do nothing for the matrices.
  // Called by ShallowCopy() and DeepCopy()
  // \pre source_exists!=0
  // \pre not_this: source!=this
  void PartialCopy(vtkCamera *source);

  double WindowCenter[2];
  double ObliqueAngles[2];
  double FocalPoint[3];
  double Position[3];
  double ViewUp[3];
  double ViewAngle;
  double ClippingRange[2];
  double EyeAngle;
  int    ParallelProjection;
  double ParallelScale;
  int    Stereo;
  int    LeftEye;
  double Thickness;
  double Distance;
  double DirectionOfProjection[3];
  double ViewPlaneNormal[3];
  double ViewShear[3];
  int    UseHorizontalViewAngle;

  int    UseOffAxisProjection;

  double ScreenBottomLeft[3];
  double ScreenBottomRight[3];
  double ScreenTopRight[3];

  double EyeSeparation;

  vtkMatrix4x4 *WorldToScreenMatrix;
  vtkTimeStamp  WorldToScreenMatrixMTime;

  vtkMatrix4x4 *EyeTransformMatrix;

  vtkMatrix4x4 *ModelTransformMatrix;

  vtkHomogeneousTransform *UserTransform;
  vtkHomogeneousTransform *UserViewTransform;

  vtkTransform *ViewTransform;
  vtkPerspectiveTransform *ProjectionTransform;
  vtkPerspectiveTransform *Transform;
  vtkTransform *CameraLightTransform;

  vtkTransform *ModelViewTransform;

  double FocalDisk;
  //BTX
  vtkCameraCallbackCommand *UserViewTransformCallbackCommand;
  friend class vtkCameraCallbackCommand;
  //ETX

  // ViewingRaysMtime keeps track of camera modifications which will
  // change the calculation of viewing rays for the camera before it is
  // transformed to the camera's location and orientation.
  vtkTimeStamp ViewingRaysMTime;
  bool FreezeFocalPoint;
  bool UseScissor;

  vtkRecti ScissorRect;


private:
  vtkCamera(const vtkCamera&);  // Not implemented.
  void operator=(const vtkCamera&);  // Not implemented.
};

#endif