This file is indexed.

/usr/include/paraview/vtkBiQuadraticQuadraticHexahedron.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkBiQuadraticQuadraticHexahedron.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkBiQuadraticQuadraticHexahedron - cell represents a biquadratic,
// 24-node isoparametric hexahedron
// .SECTION Description
// vtkBiQuadraticQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to
// represent a three-dimensional, 24-node isoparametric biquadratic
// hexahedron. The interpolation is the standard finite element,
// biquadratic-quadratic
// isoparametric shape function. The cell includes mid-edge and center-face nodes. The
// ordering of the 24 points defining the cell is point ids (0-7,8-19, 20-23)
// where point ids 0-7 are the eight corner vertices of the cube; followed by
// twelve midedge nodes (8-19), nodes 20-23 are the center-face nodes. Note that
// these midedge nodes correspond lie
// on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7),
// (7,4), (0,4), (1,5), (2,6), (3,7). The center face nodes laying in quad
// 22-(0,1,5,4), 21-(1,2,6,5), 23-(2,3,7,6) and 22-(3,0,4,7)
//
// \verbatim
//
// top
//  7--14--6
//  |      |
// 15      13
//  |      |
//  4--12--5
//
//  middle
// 19--23--18
//  |      |
// 20      21
//  |      |
// 16--22--17
//
// bottom
//  3--10--2
//  |      |
// 11      9
//  |      |
//  0-- 8--1
//
// \endverbatim
//
//
// .SECTION See Also
// vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
// vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge
//
// .SECTION Thanks
// Thanks to Soeren Gebbert  who developed this class and
// integrated it into VTK 5.0.


#ifndef vtkBiQuadraticQuadraticHexahedron_h
#define vtkBiQuadraticQuadraticHexahedron_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"

class vtkQuadraticEdge;
class vtkQuadraticQuad;
class vtkBiQuadraticQuad;
class vtkHexahedron;
class vtkDoubleArray;

class VTKCOMMONDATAMODEL_EXPORT vtkBiQuadraticQuadraticHexahedron : public vtkNonLinearCell
{
public:
  static vtkBiQuadraticQuadraticHexahedron *New();
  vtkTypeMacro(vtkBiQuadraticQuadraticHexahedron,vtkNonLinearCell);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Implement the vtkCell API. See the vtkCell API for descriptions
  // of these methods.
  int GetCellType() {return VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON;}
  int GetCellDimension() {return 3;}
  int GetNumberOfEdges() {return 12;}
  int GetNumberOfFaces() {return 6;}
  vtkCell *GetEdge(int);
  vtkCell *GetFace(int);

  int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
  void Contour(double value, vtkDataArray *cellScalars,
               vtkIncrementalPointLocator *locator, vtkCellArray *verts,
               vtkCellArray *lines, vtkCellArray *polys,
               vtkPointData *inPd, vtkPointData *outPd,
               vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
  int EvaluatePosition(double x[3], double* closestPoint,
                       int& subId, double pcoords[3],
                       double& dist2, double *weights);
  void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                        double *weights);
  int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
  void Derivatives(int subId, double pcoords[3], double *values,
                   int dim, double *derivs);
  virtual double *GetParametricCoords();

  // Description:
  // Clip this biquadratic hexahedron using scalar value provided. Like
  // contouring, except that it cuts the hex to produce linear
  // tetrahedron.
  void Clip(double value, vtkDataArray *cellScalars,
            vtkIncrementalPointLocator *locator, vtkCellArray *tetras,
            vtkPointData *inPd, vtkPointData *outPd,
            vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
            int insideOut);

  // Description:
  // Line-edge intersection. Intersection has to occur within [0,1] parametric
  // coordinates and with specified tolerance.
  int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                        double x[3], double pcoords[3], int& subId);

  // Description:
  // @deprecated Replaced by vtkBiQuadraticQuadraticHexahedron::InterpolateFunctions as of VTK 5.2
  static void InterpolationFunctions(double pcoords[3], double weights[24]);
  // Description:
  // @deprecated Replaced by vtkBiQuadraticQuadraticHexahedron::InterpolateDerivs as of VTK 5.2
  static void InterpolationDerivs(double pcoords[3], double derivs[72]);
  // Description:
  // Compute the interpolation functions/derivatives
  // (aka shape functions/derivatives)
  virtual void InterpolateFunctions(double pcoords[3], double weights[24])
    {
    vtkBiQuadraticQuadraticHexahedron::InterpolationFunctions(pcoords,weights);
    }
  virtual void InterpolateDerivs(double pcoords[3], double derivs[72])
    {
    vtkBiQuadraticQuadraticHexahedron::InterpolationDerivs(pcoords,derivs);
    }
  // Description:
  // Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
  // Ids are related to the cell, not to the dataset.
  static int *GetEdgeArray(int edgeId);
  static int *GetFaceArray(int faceId);

  // Description:
  // Given parametric coordinates compute inverse Jacobian transformation
  // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
  // function derivatives.
  void JacobianInverse(double pcoords[3], double **inverse, double derivs[72]);

protected:
  vtkBiQuadraticQuadraticHexahedron();
  ~vtkBiQuadraticQuadraticHexahedron();

  vtkQuadraticEdge *Edge;
  vtkQuadraticQuad *Face;
  vtkBiQuadraticQuad *BiQuadFace;
  vtkHexahedron    *Hex;
  vtkPointData     *PointData;
  vtkCellData      *CellData;
  vtkDoubleArray   *CellScalars;
  vtkDoubleArray   *Scalars;

  void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId,
    vtkDataArray *cellScalars);

private:
  vtkBiQuadraticQuadraticHexahedron(const vtkBiQuadraticQuadraticHexahedron&);  // Not implemented.
  void operator=(const vtkBiQuadraticQuadraticHexahedron&);  // Not implemented.
};

#endif