This file is indexed.

/usr/include/paraview/Quadrics_fs.cxx is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/* DO NOT EDIT.
 * Generated by ../../../bin/vtkEncodeString
 * 
 * Define the Quadrics_fs string.
 *
 * Generated from file: /build/paraview-arsa8T/paraview-5.0.1+dfsg1/Plugins/PointSprite/Rendering/Resources/Shaders/Quadrics_fs.glsl
 */
const char *Quadrics_fs =
"/*=========================================================================\n"
"\n"
" Program:   Visualization Toolkit\n"
" Module:    Quadrics_fs.glsl\n"
"\n"
" Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen\n"
" All rights reserved.\n"
" See Copyright.txt or http://www.kitware.com/Copyright.htm for details.\n"
"\n"
" This software is distributed WITHOUT ANY WARRANTY; without even\n"
" the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR\n"
" PURPOSE.  See the above copyright notice for more information.\n"
"\n"
" =========================================================================*/\n"
"\n"
"// .NAME Quadrics_fs.glsl\n"
"// .SECTION Thanks\n"
"// <verbatim>\n"
"//\n"
"//  This file is part of the PointSprites plugin developed and contributed by\n"
"//\n"
"//  Copyright (c) CSCS - Swiss National Supercomputing Centre\n"
"//                EDF - Electricite de France\n"
"//\n"
"//  John Biddiscombe, Ugo Varetto (CSCS)\n"
"//  Stephane Ploix (EDF)\n"
"//\n"
"// </verbatim>\n"
"\n"
"//\n"
"// IN:\n"
"//   - vertex position\n"
"//   - point size\n"
"//   - ray origin\n"
"//   - perspective flag\n"
"//   - quadric equation coefficients\n"
"//   - color\n"
"//   - viewport (width and height only)\n"
"//   - min point size (pointThreshold)\n"
"//\n"
"// OUT:\n"
"//   - fragment color computed from point intersected by ray shot from\n"
"//     viewpoint through point computed from current fragment coordinate\n"
"//   - fragment depth computed by projecting the intersection point into screen\n"
"//     coordinates\n"
"\n"
"\n"
"// OPTIMAL\n"
"#define ELLIPSOID\n"
"//#define CYLINDER\n"
"//#define CONE\n"
"//#define HYPERBOLOID1\n"
"//#define HYPERBOLOID2\n"
"//#define PARABOLOID\n"
"\n"
"// SUB OPTIMAL\n"
"//#define HYPER_PARABOLOID\n"
"\n"
"uniform vec2 viewport; // only width and height passed, no origin\n"
"uniform float pointSizeThreshold; // minimum point size\n"
"\n"
"varying vec4 color;\n"
"varying float a;\n"
"varying float b;\n"
"varying float c;\n"
"varying float d;\n"
"varying float e;\n"
"varying float f;\n"
"varying float g;\n"
"varying float h;\n"
"varying float i;\n"
"varying float j;\n"
"varying float pointSize;\n"
"varying float perspective;\n"
"\n"
"vec3 raydir; // ray direction in screen space\n"
"vec3 rayorigin; // ray origin in screen space\n"
"\n"
"#ifndef ELLIPSOID\n"
"varying mat4 Ti;\n"
"#endif\n"
"\n"
"const float FLAT_SHADE_POINT_SIZE = 1.0; //if point size < 1 use flat shading\n"
"\n"
"const float FEPS = 0.0001;\n"
"\n"
"const float BOUND = 1.0 + FEPS;\n"
"\n"
"const vec3 MIN_BOUND = vec3(-BOUND);\n"
"\n"
"const vec3 MAX_BOUND = vec3(BOUND);\n"
"\n"
"//------------------------------------------------------------------------------\n"
"// BOUNDS CHECK\n"
"// in general it makes sense to check only along the z direction for:\n"
"// - paraboloids\n"
"// - hyperboloids of one sheet\n"
"// - cylinders\n"
"// - cones\n"
"// and no checking at all is required for ellipsoids\n"
"#ifndef ELLIPSOID\n"
"bool InBounds( vec3 P )\n"
"	{\n"
"	vec4 v = Ti * gl_ModelViewMatrixInverse * vec4( P, 1. );\n"
"#if defined( CYLINDER ) || defined( CONE ) || defined( HYPERBOLOID1 ) || defined( PARABOLOID )\n"
"	return v.z >= -BOUND && v.z <= BOUND;\n"
"#else\n"
"	return all( greaterThanEqual( v.xyz, MIN_BOUND ) ) &&\n"
"	all( lessThanEqual( v.xyz, MAX_BOUND ) );\n"
"#endif\n"
"	}\n"
"#endif\n"
"//------------------------------------------------------------------------------\n"
"// INTERSECTION\n"
"struct I\n"
"{\n"
"	vec3 P;\n"
"	vec3 N;\n"
"	float t;\n"
"};\n"
"\n"
"// compute unit normal from gradient\n"
"vec3 ComputeNormal(vec3 P)\n"
"{\n"
"	return normalize(vec3(dot(vec4(a, d, e, 1.), vec4(P, g)), // should multiply by 2 for actual gradient\n"
"			dot(vec4(d, b, f, 1.), vec4(P, h)), // should multiply by 2 for actual gradient\n"
"			dot(vec4(e, f, c, 1.), vec4(P, i)) // should multiply by 2 for actual gradient\n"
"			));\n"
"}\n"
"\n"
"// compute ray quadric intersection; if no intersection occurs I.t is < 0\n"
"// main axis length and orientation are used to clip the quadric; not\n"
"// required for closed quadrics (ellipsoids)\n"
"// | a d e g |\n"
"// | d b f h |\n"
"// | e f c i |\n"
"// | g h i j |\n"
"// ax^2 + by^2 + cz^2 + 2dxy +2exz + 2fyz + 2gx + 2hy + 2iz + j = 0\n"
"/// @todo pass vec3(a, b, c), vec3( d, e, f ) and vec3( g, h, i ) instead of single coefficients\n"
"I ComputeRayQuadricIntersection()\n"
"{\n"
"	I ip;\n"
"	ip.t = -1.0;\n"
"	vec3 P = rayorigin;\n"
"	vec3 D = raydir;\n"
"	float A = 0.0;\n"
"	float B = 0.0;\n"
"	float C = 0.0;\n"
"	if (bool(perspective))\n"
"		{\n"
"		A = dot(vec3(a, b, c), D * D) + 2. * dot(vec3(d, e, f), D.xxy * D.yzz);\n"
"		B = 2. * dot(vec3(g, h, i), D);\n"
"		C = j;\n"
"		}\n"
"	else\n"
"		{\n"
"		A = c;\n"
"		//B = -2. * dot(  vec4( c, e, f, 1. ), vec4( P.zxy, 1. ) );\n"
"		B = -2. * dot(vec4(d, e, f, i), vec4(P.zxy, 1.));\n"
"		C = dot(vec3(a, b, c), P * P) + 2. * (dot(vec3(d, e, f), P.xxy * P.yzz)\n"
"				+ dot(vec3(g, h, i), P)) + j;\n"
"		}\n"
"	float delta = B * B - 4. * A * C;\n"
"	if (delta < 0.0)\n"
"		return ip;\n"
"	float d = sqrt(delta);\n"
"	A = 1. / A;\n"
"	A *= 0.5;\n"
"	float t2 = A * (-B + d);\n"
"	float t1 = A * (-B - d);\n"
"#ifdef ELLIPSOID\n"
"	ip.P = rayorigin + D * min(t1, t2);\n"
"	ip.N = ComputeNormal(ip.P);\n"
"	ip.t = 0.;\n"
"#else\n"
"	vec3 P1 = rayorigin + D * min( t1, t2 );\n"
"	vec3 P2 = rayorigin + D * max( t1, t2 );\n"
"	if( InBounds( P1 ) )\n"
"		{\n"
"		ip.P = P1;\n"
"		ip.N = ComputeNormal( P1 );\n"
"		ip.t = 0.;\n"
"		}\n"
"	else if( InBounds( P2 ) )\n"
"		{\n"
"		ip.P = P2;\n"
"		ip.N = ComputeNormal( P2 );\n"
"		ip.t = 0.;\n"
"		}\n"
"#endif\n"
"	return ip;\n"
"}\n"
"\n"
"//------------------------------------------------------------------------------\n"
"// LIGHTING, standard phong lighting model\n"
"vec3 lightDir = normalize(vec3(0.1, 0.1, 1.));\n"
"float kd = 1.0;\n"
"float ka = 0.01;\n"
"float ks = .5;\n"
"float sh = 90.0;\n"
"vec4 refcolor = vec4(1., 1., 1., 1.);\n"
"vec4 ComputeColor(vec4 color, vec3 n, vec3 P)\n"
"{\n"
"	if (pointSize < FLAT_SHADE_POINT_SIZE)\n"
"		return color;\n"
"\n"
"	vec3 col = (0, 0, 0);\n"
"	vec3 N;\n"
"	float d;\n"
"	vec3 viewdir;\n"
"	float vl;\n"
"	float s;\n"
"\n"
"	for (int li = 0; li < 4; li++)\n"
"		{\n"
"		lightDir = normalize(gl_LightSource[li].position);\n"
"		N = faceforward(-n, lightDir, n);\n"
"		d = dot(N, lightDir);\n"
"		viewdir = normalize(-P);\n"
"		vl = max(0., dot(reflect(-lightDir, N), viewdir));\n"
"		s = pow(vl, gl_FrontMaterial.shininess);\n"
"		col += gl_FrontMaterial.specular * s * gl_LightSource[li].specular.rgb + kd\n"
"				* d * color.rgb * gl_LightSource[li].diffuse.rgb + ka * color.rgb\n"
"				* gl_LightSource[li].ambient.rgb;\n"
"		}\n"
"\n"
"	return vec4(col, color.a);\n"
"\n"
"}\n"
"\n"
"//------------------------------------------------------------------------------\n"
"// MAIN\n"
"void propFuncFS(void)\n"
"{\n"
"	if (pointSize < pointSizeThreshold || color.a <= 0.0)\n"
"		discard;\n"
"	vec3 fc = gl_FragCoord.xyz;\n"
"	fc.xy /= viewport;\n"
"	fc *= 2.0;\n"
"	fc -= 1.0;\n"
"	vec4 p = gl_ProjectionMatrixInverse * vec4(fc, 1.);\n"
"	if (bool(perspective))\n"
"		{\n"
"		// in perspective mode, rayorigin is always at (0, 0, 0)\n"
"		rayorigin = vec3(0., 0., 0.);\n"
"		raydir = vec3(p) / p.w;\n"
"		}\n"
"	else\n"
"		{\n"
"		// in orthographic mode, raydir is always ( 0., 0., -1. );\n"
"		raydir = vec3(0., 0., -1.);\n"
"		rayorigin = vec3(p.x / p.w, p.y / p.w, 0.);\n"
"		}\n"
"	// compute intersection\n"
"	I i = ComputeRayQuadricIntersection();\n"
"	if (i.t < 0.0)\n"
"		discard;\n"
"	// compute color\n"
"	gl_FragColor = ComputeColor(color, i.N, i.P);\n"
"	// update depth by projecting point and updating depth coordinate\n"
"	// the transposed version of the projection matrix is used to\n"
"	// perform vector, matrix row product in one line:\n"
"	// M[2][*] x V = Vt x Mt[*][2] where:\n"
"	//   % V  is a column vector\n"
"	//   % Vt is a row vector\n"
"	//   % M is a square matrix\n"
"	//   % Mt is the transpose of M\n"
"	float z = dot(vec4(i.P, 1.), gl_ProjectionMatrixTranspose[2]);\n"
"	float w = dot(vec4(i.P, 1.), gl_ProjectionMatrixTranspose[3]);\n"
"	gl_FragDepth = 0.5 * (z / w + 1.0);\n"
"}\n"
"\n";