This file is indexed.

/usr/share/odin/sequences/odinpilot.cpp is in odin 1.8.8-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//////////////////////////////////////////////////////////////////////////////
//
// A navigator sequence for the ODIN framework
//
//////////////////////////////////////////////////////////////////////////////



// includes for the sequence objects
#include <odinseq/seqall.h>



// The method itself is a class that is derived from
// an abstract base class 'SeqMethod' that contains all
// routines common to all methods:

class METHOD_CLASS : public SeqMethod {

 public:

  // Constructor that takes the methods identifier (unique string) as its argument
  METHOD_CLASS(const STD_string& label);

  // virtual functions that are overwritten in this method to build the sequence,
  // calculate parameter relations, etc.:
  void method_pars_init();
  void method_seq_init();
  void method_rels();
  void method_pars_set();

 private:

  // Parameters for this method:
  JDXfloat T1Ernst;
  JDXint   DummyCycles;

  JDXint NumSagSlices;
  JDXint NumCorSlices;
  JDXint NumAxiSlices;
  JDXfloat PilotSliceDist;

  // Sequence objects for this method:
  SeqPulsar exc;

  SeqDelay relaxdelay;

  SeqObjLoop peloop;
  SeqObjLoop sliceloop;
  SeqObjLoop reploop;
  SeqObjLoop dummyloop;

  SeqObjList scanpart;
  SeqObjList dummypart;

  SeqDelay dummypad;

  SeqGradEcho grech;

  SeqGradTrapezParallel crusher;
  SeqDelay   crusherdelay;

  SeqRotMatrixVector pilotrot;


  unsigned int nslices;
  ivector nslices_dir;
  dvector dirvec;
  Geometry area[n_orientations];

};

////////////////////////////////////////////////////////////////////////////////////

METHOD_CLASS::METHOD_CLASS (const STD_string& label)
                                   : SeqMethod(label) {
  // Put in here all stuff that will once be initialised and
  // never changed

  // Specify a short description of the method
  set_description("Navigator which acquires three orthogonal sets of slices." );
}


////////////////////////////////////////////////////////////////////////////////////

void METHOD_CLASS::method_pars_init() {
  // In this function the methods parameters will be initialised


  // Assign default values:
  commonPars->set_RepetitionTime(300.0);
  commonPars->set_AcqSweepWidth(25.0);
  commonPars->set_MatrixSize(readDirection,128);


  // set default values and a short a description (which
  // will appear as a tooltip in the UI) for each parameter
  T1Ernst=1300.0;
  T1Ernst.set_minmaxval(0.0,5000.0).set_description("For optimum SNR, the flip angle will be set to the Ernst angle using this T1");

  DummyCycles=3;
  DummyCycles.set_description("Number of dummy shots before actual acquisition");


  NumSagSlices=3;
  NumSagSlices.set_description("Number of sagittal slices in Pilot");

  NumCorSlices=3;
  NumCorSlices.set_description("Number of coronal slices in Pilot");

  NumAxiSlices=3;
  NumAxiSlices.set_description("Number of axial slices in Pilot");

  PilotSliceDist=25.0;
  PilotSliceDist.set_description("Slice distance of Pilot");


  // Make method specific parameters visible in the user interface
  append_parameter(T1Ernst,"T1Ernst");
  append_parameter(DummyCycles,"DummyCycles");
  append_parameter(NumSagSlices,"NumSagSlices");
  append_parameter(NumCorSlices,"NumCorSlices");
  append_parameter(NumAxiSlices,"NumAxiSlices");
  append_parameter(PilotSliceDist,"PilotSliceDist");

}


////////////////////////////////////////////////////////////////////////////////////


void METHOD_CLASS::method_seq_init() {
  Log<Seq> odinlog(this,"method_seq_init");

  // Put in here all stuff to create the layout of the sequence


  // number of slices in each direction
  nslices_dir.resize(n_orientations);
  nslices_dir[sagittal]=NumSagSlices;
  nslices_dir[coronal]=NumCorSlices;
  nslices_dir[axial]=NumAxiSlices;


  nslices=nslices_dir.sum();

  geometryInfo->reset(); // Use default orientations



  ///////////////// Excitation Pulse: /////////////////////

  // Get the slice thickness from the global geometry handler 'geometryInfo':

  float slicethick=4.0;

  // Create the sinc shaped excitation pulse.
  exc=SeqPulsarSinc("exc",slicethick,false,2.0,commonPars->get_FlipAngle());

  // This is useful for simulating/visualization of the sequence
  exc.set_pulse_type(excitation);

  // Do not use maxDistEncoding
  exc.set_encoding_scheme(linearEncoding);

  // Pilot rotation and slice offset

  dvector offset(nslices);
  offset=0.0;

  pilotrot=SeqRotMatrixVector("pilotrot");

  dirvec.resize(nslices);

  int ioffset=0;
  for(int idir=0; idir<n_orientations; idir++) {

    area[idir].set_orientation(sliceOrientation(idir));

    area[idir].set_nSlices(nslices_dir[idir]);
    area[idir].set_sliceDistance(PilotSliceDist);
    dvector slicevec=area[idir].get_sliceOffsetVector();

    for(int islice=0; islice<nslices_dir[idir]; islice++) {
      offset[ioffset]=slicevec[islice];
      dirvec[ioffset]=idir;
      pilotrot.append(area[idir].get_gradrotmatrix());
      ioffset++;
    }
  }

  ODINLOG(odinlog,significantDebug) << "offset=" << offset << STD_endl;

  // Set the frequency list of the excitation pulse so that we will excite all slices in the slicepack
  exc.set_freqlist( systemInfo->get_gamma("") * exc.get_strength() / (2.0*PII) *  offset );


  ivector iv(nslices);
  iv=0;
  exc.set_indexvec(iv); // Always set zero slice index, indexing will be done by userdef dimension


  // This loop object is used to loop over the slices
  sliceloop=SeqObjLoop("sliceloop");



  ////////////////// Geometry: /////////////////////////////////


  // calculate the resolution in the read Channel and set the number of phase encoding
  // steps so that we will obtain a uniform resolution in read and phase Channel:
  float resolution=secureDivision(geometryInfo->get_FOV(readDirection),commonPars->get_MatrixSize(readDirection));
  commonPars->set_MatrixSize(phaseDirection,int(secureDivision(geometryInfo->get_FOV(phaseDirection),resolution)+0.5),noedit);


  //////////////// Delays: //////////////////////////////

  // relaxation delay after each readout
  relaxdelay=SeqDelay("relaxdelay");

  //////////////// Gradient Echo Module: //////////////////////////////

  float os_factor=2.0; // avoid cut-off in read direction for off-center FOV

  // This is the gradient-recalled echo kernel of the sequence.
  // Calculations of read/phase gradient strengts and durations are
  // performed by this module itself so we just have to pass in the size and FOV
  // in each direction. This module has a tight timing scheme so that short TE is possible.
  grech=SeqGradEcho("grech", exc, commonPars->get_AcqSweepWidth(),
              commonPars->get_MatrixSize(readDirection), geometryInfo->get_FOV(readDirection),
              commonPars->get_MatrixSize(phaseDirection), geometryInfo->get_FOV(phaseDirection),
              linearEncoding, noReorder, 1, commonPars->get_ReductionFactor(), DEFAULT_ACL_BANDS,
              false, commonPars->get_PartialFourier(),0.0,false,os_factor);

  grech.set_gradrotmatrixvector(pilotrot); // rotate grech


  //////////////// Crusher Gradient: //////////////////////////////

  float crusher_strength=0.5*systemInfo->get_max_grad();
  float crusher_integral=4.0*fabs(grech.get_gradintegral().sum());

  crusher=SeqGradTrapezParallel("crusher",crusher_integral,crusher_integral,crusher_integral, crusher_strength);
  crusherdelay=SeqDelay("crusherdelay",0.1); // Small delay to avoid gradient-induced stimulation


  //////////////// Loops: //////////////////////////////

  // Construct a loop object to iterate through the phase encoding steps
  peloop=SeqObjLoop("peloop");

  // Construct a loop object to perform repetitions of the experiment
  reploop=SeqObjLoop("reploop");

  // Construct a loop object to perform dummy cylces
  dummyloop=SeqObjLoop("dummyloop");


  //////////////// Constructing the Sequence: ///////////////


  // This sequence container will hold the objects for one readout:
  scanpart=SeqObjList("scanpart");
  scanpart = grech + crusherdelay + crusher;


  // Contains kernel of one dummy cycle
  dummypart=SeqObjList("dummypart");
  dummypad=SeqDelay("dummypad",scanpart.get_duration()-exc.get_duration()); // Padding delay for dummy cycle
  dummypart = exc + dummypad + relaxdelay;



  // Finally, build the whole sequence
  set_sequence(
    dummyloop(
      sliceloop(
        dummypart
      )[grech.get_exc_vector()][pilotrot]
    )[DummyCycles]
    + peloop(
        sliceloop(
          scanpart + relaxdelay   // the sequence kernel
        )[grech.get_exc_vector()][pilotrot]
      )[grech.get_pe_vector()]
  );

}


////////////////////////////////////////////////////////////////////////////////////


void METHOD_CLASS::method_rels() {
  // Put in here all stuff that has to be performed whenever one of the sequence parameters
  // has been changed by the user


  // calculate relaxdelay to get the desired repetition time
  float scandur=scanpart.get_duration()*float(nslices);
  if(scandur>commonPars->get_RepetitionTime()) commonPars->set_RepetitionTime(scandur);
  relaxdelay.set_duration( (commonPars->get_RepetitionTime()-scandur)/float(nslices) );


  // calculate Ernst angle accordng to TR
  float flipangle=180.0/PII * acos( exp ( -secureDivision ( commonPars->get_RepetitionTime(), T1Ernst) ) );
  commonPars->set_FlipAngle( flipangle, noedit );
  exc.set_flipangle( flipangle );


  // retrieve echo time from gradient echo module to display it in the user interface
  commonPars->set_EchoTime(grech.get_echo_time(), noedit );
}


////////////////////////////////////////////////////////////////////////////////////

void METHOD_CLASS::method_pars_set() {
  // Put in here all stuff that has to be performed after the parameters have been edited by the user
  // and before the sequence is played out

  // for odinreco
  grech.set_reco_vector(userdef,pilotrot,dirvec); // distinguish slices by their orientation
  recoInfo->set_Recipe("kspace | fft | offset | oversampling | usercoll | pilot("+ftos(PilotSliceDist)+") | store");

}


////////////////////////////////////////////////////////////////////////////////////

// entry point for the sequence module
ODINMETHOD_ENTRY_POINT