This file is indexed.

/usr/share/octave/packages/tsa-4.3.3/selmo.m is in octave-tsa 4.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function [FPE,AIC,BIC,SBC,MDL,CATcrit,PHI,optFPE,optAIC,optBIC,optSBC,optMDL,optCAT,optPHI,p,C]=selmo(e,NC);
% Model order selection of an autoregrssive model
% [FPE,AIC,BIC,SBC,MDL,CAT,PHI,optFPE,optAIC,optBIC,optSBC,optMDL,optCAT,optPHI]=selmo(E,N);
%
% E	Error function E(p)
% N	length of the data set, that was used for calculating E(p)
% show  optional; if given the parameters are shown
%
% FPE	Final Prediction Error (Kay 1987, Wei 1990, Priestley 1981  -> Akaike 1969)
% AIC	Akaike Information Criterion (Marple 1987, Wei 1990, Priestley 1981 -> Akaike 1974)
% BIC	Bayesian Akaike Information Criterion (Wei 1990, Priestley 1981 -> Akaike 1978,1979)
% CAT	Parzen's CAT Criterion (Wei 1994 -> Parzen 1974)
% MDL	Minimal Description length Criterion (Marple 1987 -> Rissanen 1978,83)
% SBC	Schwartz's Bayesian Criterion (Wei 1994; Schwartz 1978)
% PHI	Phi criterion (Pukkila et al. 1988, Hannan 1980 -> Hannan & Quinn, 1979)
% HAR	Haring G. (1975)
% JEW	Jenkins and Watts (1968)
%
% optFPE 	order where FPE is minimal
% optAIC 	order where AIC is minimal
% optBIC 	order where BIC is minimal
% optSBC 	order where SBC is minimal
% optMDL 	order where MDL is minimal
% optCAT 	order where CAT is minimal
% optPHI 	order where PHI is minimal
%
% usually is 
% AIC > FPE > *MDL* > PHI > SBC > CAT ~ BIC
%
% REFERENCES:
%  P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
%  S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
%  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
%  C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
%  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
%  Jenkins G.M. Watts D.G "Spectral Analysis and its applications", Holden-Day, 1968.
%  G. Haring  "Über die Wahl der optimalen Modellordnung bei der Darstellung von stationären Zeitreihen mittels Autoregressivmodell als Basis der Analyse von EEG - Biosignalen mit Hilfe eines Digitalrechners", Habilitationschrift - Technische Universität Graz, Austria, 1975.
%                  (1)"About selecting the optimal model at the representation of stationary time series by means of an autoregressive model as basis of the analysis of EEG - biosignals by means of a digital computer)"
%

%       $Id: selmo.m 11693 2013-03-04 06:40:14Z schloegl $
%       Copyright (C) 1997-2002,2008,2012 by Alois Schloegl <alois.schloegl@ist.ac.at>
%       This is part of the TSA-toolbox. See also 
%       http://pub.ist.ac.at/~schloegl/matlab/tsa/
%       http://octave.sourceforge.net/
%       http://biosig.sourceforge.net/
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

[lr,lc]=size(e);
if (lr>1) && (lc>1), 
        p=zeros(lr+1,9)+NaN;
else
        p=zeros(1,9)+NaN;
end;

if nargin<2 
        NC=lc*ones(lr,1); 
	NC=(lc-sum(isnan(e)')')*(NC<lc) + NC.*(NC>=lc); % first part 
%end;% Pmax=min([100 N/3]); end;
	%if NC<lc N=lc; end; 
        %NC=(lc-sum(isnan(e)')')*(NC<lc) + NC.*(NC>=lc); % first part 
else
        % NC=NC;
end;

M=lc-1;
m=0:M;

e = e./e(:,ones(1,lc));

for k=0:lr,
        if k>0, % 
                E=e(k,:);
                N=NC(k);
        elseif lr>1
                tmp = e;%(NC>0,:);
                tmp(isnan(tmp)) = 0;
                E = sum(tmp.*(NC*ones(1,lc)))/sum(NC); % weighted average, weigths correspond to number of valid (not missing) values 
                N = sum(NC)./sum(NC>0); % corresponding number of values, 
        else
                E = e;
                N = NC;
        end;
FPE = E.*(N+m)./(N-m);	%OK
		optFPE=find(FPE==min(FPE))-1;	%optimal order
        if isempty(optFPE), optFPE=NaN; end;
AIC = N*log(E)+2*m; 	%OK
	optAIC=find(AIC==min(AIC))-1;	%optimal order
        if isempty(optAIC), optAIC=NaN; end;
AIC4=N*log(E)+4*m;	%OK
	optAIC4=find(AIC4==min(AIC4))-1;	%optimal order
        if isempty(optAIC4), optAIC4=NaN; end;

m=1:M;
BIC=[ N*log(E(1)) N*log(E(m+1)) - (N-m).*log(1-m/N) + m*log(N) + m.*log(((E(1)./E(m+1))-1)./m)];
%BIC=[ N*log(E(1)) N*log(E(m+1)) - m + m*log(N) + m.*log(((E(1)./E(m+1))-1)./m)];
%m=0:M; BIC=N*log(E)+m*log(N);          % Hannan, 1980 -> Akaike, 1977 and Rissanen 1978
        optBIC=find(BIC==min(BIC))-1;	%optimal order
        if isempty(optBIC), optBIC=NaN; end;
        
HAR(2:lc)=-(N-m).*log((N-m).*E(m+1)./(N-m+1)./E(m));         
        HAR(1)=HAR(2);
	optHAR=min(find(HAR<=(min(HAR)+0.2)))-1;	%optimal order
%	optHAR=find(HAR==min(HAR))-1;	%optimal order
        if isempty(optHAR), optHAR=NaN; end;
        
m=0:M;
SBC = N*log(E)+m*log(N);
	optSBC=find(SBC==min(SBC))-1;	%optimal order
        if isempty(optSBC), optSBC=NaN; end;
MDL = N*log(E)+log(N)*m;
	optMDL=find(MDL==min(MDL))-1;	%optimal order
        if isempty(optMDL), optMDL=NaN; end;
        
m=0:M;
%CATcrit= (cumsum(1./E(m+1))/N-1./E(m+1));
E1=N*E./(N-m);
CATcrit= (cumsum(1./E1(m+1))/N-1./E1(m+1));	
	optCAT=find(CATcrit==min(CATcrit))-1;	%optimal order
        if isempty(optCAT), optCAT=NaN; end;

PHI = N*log(E)+2*log(log(N))*m;
	optPHI=find(PHI==min(PHI))-1;	%optimal order
        if isempty(optPHI), optPHI=NaN; end;
        
JEW = E.*(N-m)./(N-2*m-1);	% Jenkins-Watt
	optJEW=find(JEW==min(JEW))-1;	%optimal order
        if isempty(optJEW), optJEW=NaN; end;
        
% in case more than 1 minimum is found, the smaller model order is returned;
p(k+1,:) = [optFPE(1), optAIC(1), optBIC(1), optSBC(1), optCAT(1), optMDL(1), optPHI(1), optJEW(1), optHAR(1)];

end;
C=[FPE;AIC;BIC;SBC;MDL;CATcrit;PHI;JEW;HAR(:)']';