/usr/share/octave/packages/tsa-4.3.3/selmo.m is in octave-tsa 4.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | function [FPE,AIC,BIC,SBC,MDL,CATcrit,PHI,optFPE,optAIC,optBIC,optSBC,optMDL,optCAT,optPHI,p,C]=selmo(e,NC);
% Model order selection of an autoregrssive model
% [FPE,AIC,BIC,SBC,MDL,CAT,PHI,optFPE,optAIC,optBIC,optSBC,optMDL,optCAT,optPHI]=selmo(E,N);
%
% E Error function E(p)
% N length of the data set, that was used for calculating E(p)
% show optional; if given the parameters are shown
%
% FPE Final Prediction Error (Kay 1987, Wei 1990, Priestley 1981 -> Akaike 1969)
% AIC Akaike Information Criterion (Marple 1987, Wei 1990, Priestley 1981 -> Akaike 1974)
% BIC Bayesian Akaike Information Criterion (Wei 1990, Priestley 1981 -> Akaike 1978,1979)
% CAT Parzen's CAT Criterion (Wei 1994 -> Parzen 1974)
% MDL Minimal Description length Criterion (Marple 1987 -> Rissanen 1978,83)
% SBC Schwartz's Bayesian Criterion (Wei 1994; Schwartz 1978)
% PHI Phi criterion (Pukkila et al. 1988, Hannan 1980 -> Hannan & Quinn, 1979)
% HAR Haring G. (1975)
% JEW Jenkins and Watts (1968)
%
% optFPE order where FPE is minimal
% optAIC order where AIC is minimal
% optBIC order where BIC is minimal
% optSBC order where SBC is minimal
% optMDL order where MDL is minimal
% optCAT order where CAT is minimal
% optPHI order where PHI is minimal
%
% usually is
% AIC > FPE > *MDL* > PHI > SBC > CAT ~ BIC
%
% REFERENCES:
% P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
% S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981.
% C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
% W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
% Jenkins G.M. Watts D.G "Spectral Analysis and its applications", Holden-Day, 1968.
% G. Haring "Über die Wahl der optimalen Modellordnung bei der Darstellung von stationären Zeitreihen mittels Autoregressivmodell als Basis der Analyse von EEG - Biosignalen mit Hilfe eines Digitalrechners", Habilitationschrift - Technische Universität Graz, Austria, 1975.
% (1)"About selecting the optimal model at the representation of stationary time series by means of an autoregressive model as basis of the analysis of EEG - biosignals by means of a digital computer)"
%
% $Id: selmo.m 11693 2013-03-04 06:40:14Z schloegl $
% Copyright (C) 1997-2002,2008,2012 by Alois Schloegl <alois.schloegl@ist.ac.at>
% This is part of the TSA-toolbox. See also
% http://pub.ist.ac.at/~schloegl/matlab/tsa/
% http://octave.sourceforge.net/
% http://biosig.sourceforge.net/
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
[lr,lc]=size(e);
if (lr>1) && (lc>1),
p=zeros(lr+1,9)+NaN;
else
p=zeros(1,9)+NaN;
end;
if nargin<2
NC=lc*ones(lr,1);
NC=(lc-sum(isnan(e)')')*(NC<lc) + NC.*(NC>=lc); % first part
%end;% Pmax=min([100 N/3]); end;
%if NC<lc N=lc; end;
%NC=(lc-sum(isnan(e)')')*(NC<lc) + NC.*(NC>=lc); % first part
else
% NC=NC;
end;
M=lc-1;
m=0:M;
e = e./e(:,ones(1,lc));
for k=0:lr,
if k>0, %
E=e(k,:);
N=NC(k);
elseif lr>1
tmp = e;%(NC>0,:);
tmp(isnan(tmp)) = 0;
E = sum(tmp.*(NC*ones(1,lc)))/sum(NC); % weighted average, weigths correspond to number of valid (not missing) values
N = sum(NC)./sum(NC>0); % corresponding number of values,
else
E = e;
N = NC;
end;
FPE = E.*(N+m)./(N-m); %OK
optFPE=find(FPE==min(FPE))-1; %optimal order
if isempty(optFPE), optFPE=NaN; end;
AIC = N*log(E)+2*m; %OK
optAIC=find(AIC==min(AIC))-1; %optimal order
if isempty(optAIC), optAIC=NaN; end;
AIC4=N*log(E)+4*m; %OK
optAIC4=find(AIC4==min(AIC4))-1; %optimal order
if isempty(optAIC4), optAIC4=NaN; end;
m=1:M;
BIC=[ N*log(E(1)) N*log(E(m+1)) - (N-m).*log(1-m/N) + m*log(N) + m.*log(((E(1)./E(m+1))-1)./m)];
%BIC=[ N*log(E(1)) N*log(E(m+1)) - m + m*log(N) + m.*log(((E(1)./E(m+1))-1)./m)];
%m=0:M; BIC=N*log(E)+m*log(N); % Hannan, 1980 -> Akaike, 1977 and Rissanen 1978
optBIC=find(BIC==min(BIC))-1; %optimal order
if isempty(optBIC), optBIC=NaN; end;
HAR(2:lc)=-(N-m).*log((N-m).*E(m+1)./(N-m+1)./E(m));
HAR(1)=HAR(2);
optHAR=min(find(HAR<=(min(HAR)+0.2)))-1; %optimal order
% optHAR=find(HAR==min(HAR))-1; %optimal order
if isempty(optHAR), optHAR=NaN; end;
m=0:M;
SBC = N*log(E)+m*log(N);
optSBC=find(SBC==min(SBC))-1; %optimal order
if isempty(optSBC), optSBC=NaN; end;
MDL = N*log(E)+log(N)*m;
optMDL=find(MDL==min(MDL))-1; %optimal order
if isempty(optMDL), optMDL=NaN; end;
m=0:M;
%CATcrit= (cumsum(1./E(m+1))/N-1./E(m+1));
E1=N*E./(N-m);
CATcrit= (cumsum(1./E1(m+1))/N-1./E1(m+1));
optCAT=find(CATcrit==min(CATcrit))-1; %optimal order
if isempty(optCAT), optCAT=NaN; end;
PHI = N*log(E)+2*log(log(N))*m;
optPHI=find(PHI==min(PHI))-1; %optimal order
if isempty(optPHI), optPHI=NaN; end;
JEW = E.*(N-m)./(N-2*m-1); % Jenkins-Watt
optJEW=find(JEW==min(JEW))-1; %optimal order
if isempty(optJEW), optJEW=NaN; end;
% in case more than 1 minimum is found, the smaller model order is returned;
p(k+1,:) = [optFPE(1), optAIC(1), optBIC(1), optSBC(1), optCAT(1), optMDL(1), optPHI(1), optJEW(1), optHAR(1)];
end;
C=[FPE;AIC;BIC;SBC;MDL;CATcrit;PHI;JEW;HAR(:)']';
|