/usr/share/octave/packages/tsa-4.3.3/mvfreqz.m is in octave-tsa 4.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | function [S,h,PDC,COH,DTF,DC,pCOH,dDTF,ffDTF, pCOH2, PDCF, coh,GGC,Af,GPDC,GGC2, DCOH]=mvfreqz(B,A,C,N,Fs)
% MVFREQZ multivariate frequency response
% [S,h,PDC,COH,DTF,DC,pCOH,dDTF,ffDTF,pCOH2,PDCF,coh,GGC,Af,GPDC,GGC2,DCOH] = mvfreqz(B,A,C,f,Fs)
% [...] = mvfreqz(B,A,C,N,Fs)
%
% INPUT:
% =======
% A, B multivariate polynomials defining the transfer function
%
% a0*Y(n) = b0*X(n) + b1*X(n-1) + ... + bq*X(n-q)
% - a1*Y(n-1) - ... - ap*Y(:,n-p)
%
% A=[a0,a1,a2,...,ap] and B=[b0,b1,b2,...,bq] must be matrices of
% size Mx((p+1)*M) and Mx((q+1)*M), respectively.
%
% C is the covariance of the input noise X (i.e. D'*D if D is the mixing matrix)
% N if scalar, N is the number of frequencies
% if N is a vector, N are the designated frequencies.
% Fs sampling rate [default 2*pi]
%
% A,B,C and D can by obtained from a multivariate time series
% through the following commands:
% [AR,RC,PE] = mvar(Y,P);
% M = size(AR,1); % number of channels
% A = [eye(M),-AR];
% B = eye(M);
% C = PE(:,M*P+1:M*(P+1));
%
% Fs sampling rate in [Hz]
% (N number of frequencies for computing the spectrum, this will become OBSOLETE),
% f vector of frequencies (in [Hz])
%
%
% OUTPUT:
% =======
% S power spectrum
% h transfer functions, abs(h.^2) is the non-normalized DTF [11]
% PDC partial directed coherence [2]
% DC directed coupling [13]
% COH coherency (complex coherence) [5]
% DTF directed transfer function [3,13]
% pCOH partial coherence
% dDTF direct Directed Transfer function
% ffDTF full frequency Directed Transfer Function
% pCOH2 partial coherence - alternative method
% GGC a modified version of Geweke's Granger Causality [Geweke 1982]
% !!! it uses a Multivariate AR model, and computes the bivariate GGC as in [Bressler et al 2007].
% This is not the same as using bivariate AR models and GGC as in [Bressler et al 2007]
% Af Frequency transform of A(z), abs(Af.^2) is the non-normalized PDC [11]
% PDCF Partial Directed Coherence Factor [2]
% GPDC Generalized Partial Directed Coherence [9,10]
% DCOH directed coherence or Generalized DTF (GDTF) [12] (equ. 11a)
%
% see also: FREQZ, MVFILTER, MVAR
%
% REFERENCE(S):
% [1] H. Liang et al. Neurocomputing, 32-33, pp.891-896, 2000.
% [2] L.A. Baccala and K. Samashima, Biol. Cybern. 84,463-474, 2001.
% [3] A. Korzeniewska, et al. Journal of Neuroscience Methods, 125, 195-207, 2003.
% [4] Piotr J. Franaszczuk, Ph.D. and Gregory K. Bergey, M.D.
% Fast Algorithm for Computation of Partial Coherences From Vector Autoregressive Model Coefficients
% World Congress 2000, Chicago.
% [5] Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M.
% Identifying true brain interaction from EEG data using the imaginary part of coherency.
% Clin Neurophysiol. 2004 Oct;115(10):2292-307.
% [6] Schlogl A., Supp G.
% Analyzing event-related EEG data with multivariate autoregressive parameters.
% (Eds.) C. Neuper and W. Klimesch,
% Progress in Brain Research: Event-related Dynamics of Brain Oscillations.
% Analysis of dynamics of brain oscillations: methodological advances. Elsevier.
% Progress in Brain Research 159, 2006, p. 135 - 147
% [7] Bressler S.L., Richter C.G., Chen Y., Ding M. (2007)
% Cortical fuctional network organization from autoregressive modelling of loal field potential oscillations.
% Statistics in Medicine, doi: 10.1002/sim.2935
% [8] Geweke J., 1982
% J.Am.Stat.Assoc., 77, 304-313.
% [9] L.A. Baccala, D.Y. Takahashi, K. Sameshima. (2006)
% Generalized Partial Directed Coherence.
% Submitted to XVI Congresso Brasileiro de Automatica, Salvador, Bahia.
% [10] L.A. Baccala, D.Y. Takahashi, K. Sameshima.
% Computer Intensive Testing for the Influence Between Time Series,
% Eds. B. Schelter, M. Winterhalder, J. Timmer:
% Handbook of Time Series Analysis - Recent Theoretical Developments and Applications
% Wiley, p.413, 2006.
% [11] M. Eichler
% On the evaluation of informatino flow in multivariate systems by the directed transfer function
% Biol. Cybern. 94: 469-482, 2006.
% [12] L. Faes, S. Erla, and G. Nollo, (2012)
% Measuring Connectivity in Linear Multivariate Processes: Definitions, Interpretation, and Practical Analysis
% Computational and Mathematical Methods in Medicine Volume 2012 (2012), Article ID 140513, 18 pages
% doi:10.1155/2012/140513
% [13] Maciej Kaminski, Mingzhou Ding, Wilson A. Truccolo, Steven L. Bressler
% Evaluating causal relations in neural systems: Granger causality,
% directed transfer function and statistical assessment of significance.
% Biol. Cybern. 85, 145-157 (2001)
%
% $Id: mvfreqz.m 12366 2013-11-25 22:25:52Z schloegl $
% Copyright (C) 1996-2008 by Alois Schloegl <alois.schloegl@gmail.com>
% Copyright (C) 2013 Martin Billinger
% This is part of the TSA-toolbox. See also
% http://pub.ist.ac.at/~schloegl/matlab/tsa/
% http://octave.sourceforge.net/
% http://biosig.sourceforge.net/
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
[K1,K2] = size(A);
p = K2/K1-1;
%a=ones(1,p+1);
[K1,K2] = size(B);
q = K2/K1-1;
%b=ones(1,q+1);
if nargin<3
C = eye(K1,K1);
end;
if nargin<5,
Fs= 1;
end;
if nargin<4,
N = 512;
f = (0:N-1)*(Fs/(2*N));
end;
if all(size(N)==1),
fprintf(1,'Warning MVFREQZ: The forth input argument N is a scalar, this is ambigous.\n');
fprintf(1,' In the past, N was used to indicate the number of spectral lines. This might change.\n');
fprintf(1,' In future versions, it will indicate the spectral line.\n');
f = (0:N-1)*(Fs/(2*N));
else
f = N;
end;
N = length(f);
s = exp(i*2*pi*f/Fs);
z = i*2*pi/Fs;
h=zeros(K1,K1,N);
Af=zeros(K1,K1,N);
g=zeros(K1,K1,N);
S=zeros(K1,K1,N);
S1=zeros(K1,K1,N);
DTF=zeros(K1,K1,N);
COH=zeros(K1,K1,N);
%COH2=zeros(K1,K1,N);
PDC=zeros(K1,K1,N);
%PDC3=zeros(K1,K1,N);
PDCF = zeros(K1,K1,N);
pCOH = zeros(K1,K1,N);
GGC=zeros(K1,K1,N);
GGC2=zeros(K1,K1,N);
DCOH=zeros(K1,K1,N);
invC=inv(C);
tmp1=zeros(1,K1);
tmp2=zeros(1,K1);
M = zeros(K1,K1,N);
detG = zeros(N,1);
%D = sqrtm(C);
%iD= inv(D);
ddc2 = diag(diag(C).^(-1/2));
ddc2i = diag(diag(C).^(1/2));
for n=1:N,
atmp = zeros(K1);
for k = 1:p+1,
atmp = atmp + A(:,k*K1+(1-K1:0))*exp(z*(k-1)*f(n));
end;
% compensation of instantaneous correlation
% atmp = iD*atmp*D;
btmp = zeros(K1);
for k = 1:q+1,
btmp = btmp + B(:,k*K1+(1-K1:0))*exp(z*(k-1)*f(n));
end;
h(:,:,n) = atmp\btmp;
Af(:,:,n) = atmp/btmp;
S(:,:,n) = h(:,:,n)*C*h(:,:,n)'/Fs;
S1(:,:,n) = h(:,:,n)*h(:,:,n)';
ctmp = ddc2*atmp; %% used for GPDC
dtmp = h(:,:,n) * ddc2i; %% used for directed coherence (DCOH)
for k1 = 1:K1,
tmp = squeeze(atmp(:,k1));
tmp1(k1) = sqrt(tmp'*tmp);
tmp2(k1) = sqrt(tmp'*invC*tmp);
%tmp = squeeze(atmp(k1,:)');
%tmp3(k1) = sqrt(tmp'*tmp);
tmp = squeeze(ctmp(:,k1));
tmp3(k1) = sqrt(tmp'*tmp);
tmp = dtmp(k1,:);
tmp4(k1) = sqrt(tmp*tmp');
end;
PDCF(:,:,n) = abs(atmp)./tmp2(ones(1,K1),:);
PDC(:,:,n) = abs(atmp)./tmp1(ones(1,K1),:);
GPDC(:,:,n) = abs(ctmp)./tmp3(ones(1,K1),:);
%PDC3(:,:,n) = abs(atmp)./tmp3(:,ones(1,K1));
DCOH(:,:,n) = abs(dtmp) ./ tmp4(ones(1,K1),:)';
g = atmp/btmp;
G(:,:,n) = g'*invC*g;
detG(n) = det(G(:,:,n));
end;
if nargout<4, return; end;
%%%%% directed transfer function
for k1=1:K1;
DEN=sum(abs(h(k1,:,:)).^2,2);
for k2=1:K2;
%COH2(k1,k2,:) = abs(S(k1,k2,:).^2)./(abs(S(k1,k1,:).*S(k2,k2,:)));
COH(k1,k2,:) = (S(k1,k2,:))./sqrt(abs(S(k1,k1,:).*S(k2,k2,:)));
coh(k1,k2,:) = (S1(k1,k2,:))./sqrt(abs(S1(k1,k1,:).*S1(k2,k2,:)));
%DTF(k1,k2,:) = sqrt(abs(h(k1,k2,:).^2))./DEN;
DTF(k1,k2,:) = abs(h(k1,k2,:))./sqrt(DEN);
ffDTF(k1,k2,:) = abs(h(k1,k2,:))./sqrt(sum(DEN,3));
pCOH2(k1,k2,:) = abs(G(k1,k2,:).^2)./(G(k1,k1,:).*G(k2,k2,:));
%M(k2,k1,:) = ((-1)^(k1+k2))*squeeze(G(k1,k2,:))./detG; % oder ist M = G?
end;
end;
dDTF = pCOH2.*ffDTF;
if nargout<6, return; end;
DC = zeros(K1);
for k = 1:p,
DC = DC + A(:,k*K1+(1:K1)).^2;
end;
if nargout<13, return; end;
for k1=1:K1;
for k2=1:K2;
% Bivariate Granger Causality (similar to Bressler et al. 2007. )
GGC(k1,k2,:) = ((C(k1,k1)*C(k2,k2)-C(k1,k2)^2)/C(k2,k2))*real(h(k1,k2,:).*conj(h(k1,k2,:)))./abs(S(k2,k2,:));
%GGC2(k1,k2,:) = -log(1-((C(k1,k1)*C(k2,k2)-C(k1,k2)^2)/C(k2,k2))*real(h(k1,k2,:).*conj(h(k1,k2,:)))./S(k2,k2,:));
end;
end;
return;
if nargout<7, return; end;
for k1=1:K1;
for k2=1:K2;
M(k2,k1,:) = ((-1)^(k1+k2))*squeeze(G(k1,k2,:))./detG; % oder ist M = G?
end;
end;
for k1=1:K1;
for k2=1:K2;
pCOH(k1,k2,:) = abs(M(k1,k2,:).^2)./(M(k1,k1,:).*M(k2,k2,:));
end;
end;
|