/usr/share/octave/packages/tsa-4.3.3/invest1.m is in octave-tsa 4.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | function [AutoCov,AutoCorr,ARPMX,E,C,s]=invest1(Y,Pmax,D);
% First Investigation of a signal (time series) - interactive
% [AutoCov,AutoCorr,ARPMX,E,CRITERIA,MOPS]=invest1(Y,Pmax,show);
%
% Y time series
% Pmax maximal order (optional)
% show optional; if given the parameters are shown
%
% AutoCov Autocorrelation
% AutoCorr normalized Autocorrelation
% PartACF Partial Autocorrelation
% E Error function E(p)
% CRITERIA curves of the various (see below) criteria,
% MOPS=[optFPE optAIC optBIC optSBC optMDL optCAT optPHI];
% optimal model order according to various criteria
%
% FPE Final Prediction Error (Kay, 1987)
% AIC Akaike Information Criterion (Marple, 1987)
% BIC Bayesian Akaike Information Criterion (Wei, 1994)
% SBC Schwartz's Bayesian Criterion (Wei, 1994)
% MDL Minimal Description length Criterion (Marple, 1987)
% CAT Parzen's CAT Criterion (Wei, 1994)
% PHI Phi criterion (Pukkila et al. 1988)
% minE order where E is minimal
%
% REFERENCES:
% P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
% S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981.
% C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
% W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
% optFPE order where FPE is minimal
% optAIC order where AIC is minimal
% optBIC order where BIC is minimal
% optSBC order where SBC is minimal
% optMDL order where MDL is minimal
% optCAT order where CAT is minimal
% optPHI order where PHI is minimal
% optRC2 max reflection coefficient larger than std-error
% $Id: invest1.m 12766 2015-04-02 10:00:34Z schloegl $
% Copyright (C) 1998-2002,2008,2010 by Alois Schloegl <alois.schloegl@gmail.com>
% This is part of the TSA-toolbox. See also
% http://biosig-consulting.com/matlab/tsa/
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
N=length(Y);
[nr,nc]=size(Y);
if nc==1 Y=transpose(Y); nc=nr; nr=1; end;
if nargin<2 Pmax=min([100 nc/3]); end;
if exist('OCTAVE_VERSION'),
fprintf(2,'Warning INVEST1: DIFF-based optimization not possible\n');
%%% missing DIM-argument in DIFF.M
else
%tmp=Y-mean(Y,2)*ones(1,nc);
RMS(:,1) = mean(Y.^2,2);
Dmax = min(Pmax,5);
for k = 1:Dmax,
RMS(:,k+1) = mean(diff(Y,k,2).^2,2);
end;
[tmp, orderDIFF] = min(RMS,[],2);
% show a nice histogram
h = histo3(orderDIFF-1);
X = 0:Dmax; H = zeros(1,Dmax+1); for k=1:length(h.X), H(find(X==h.X(k)))=h.H(k); end;
%X = 0:Dmax; H = zeros(1,Dmax+1); for k=1:length(x), H(find(X==x(k)))=h(k); end;
bar(X,H);
drawnow;
if nargin>2
oD=0;
else
oD=input('Which order should be used for differentiating [default=0] ?: ');
end;
if oD>0
Y=diff(Y,oD,2);
end;
end;
[AutoCov, AutoCorr, ARPMX, E, NC] = invest0(Y,Pmax);
[FPE,AIC,BIC,SBC,MDL,CATcrit,PHI,optFPE,optAIC,optBIC,optSBC,optMDL,optCAT,optPHI,s,C] = selmo(E,NC);
if 0,
optRC2=zeros(nr+1,1);
for k=0:nr,
if k>0
optRC2(k+1)=max(find(abs(ARPMX(k,(1:Pmax).*(2:Pmax+1)/2))*sqrt(size(Y,2))>1));
else
optRC2(k+1)=max(find(mean(abs(ARPMX(:,(1:Pmax).*(2:Pmax+1)/2))*sqrt(size(Y,2)),2)>1));
end;
end;
%GERSCH=min(find(rc.^2<(0.05/1.05)));
s=[s optRC2];
end;
%CRITERIA=([FPE;AIC;BIC;SBC;MDL;CATcrit;PHI])';
MOPS = s(1:size(s,1),:); %[optFPE optAIC optBIC optSBC optMDL optCAT optPHI];
if nargin==3,
if size(ARPMX,2)==2*Pmax,
%invest1(eeg8s,30,'s');
AR=ARPMX(:,1:Pmax);
RC=ARPMX(:,Pmax+1:2*Pmax);
else
AR=ARPMX(:,Pmax/2*(Pmax-1)+(1:Pmax));
RC=ARPMX(:,(1:Pmax).*(2:Pmax+1)/2);
end;
oo=optBIC;
sinvest1;
end;
|