This file is indexed.

/usr/share/octave/packages/tsa-4.3.3/aarmam.m is in octave-tsa 4.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
function [z,e,REV,ESU,V,Z,SPUR] = aarmam(y, Mode, MOP, UC, z0, Z0, V0, W); 
% Estimating Adaptive AutoRegressive-Moving-Average-and-mean model (includes mean term) 
%
% !! This function is obsolete and is replaced by AMARMA
%
% [z,E,REV,ESU,V,Z,SPUR] = aarmam(y, mode, MOP, UC, z0, Z0, V0, W); 
% Estimates AAR parameters with Kalman filter algorithm
% 	y(t) = sum_i(a_i(t)*y(t-i)) + m(t) + e(t) + sum_i(b_i(t)*e(t-i))
%
% State space model
%	z(t) = G*z(t-1) + w(t)    w(t)=N(0,W) 
%	y(t) = H*z(t)   + v(t)	  v(t)=N(0,V)	
%
% G = I, 
% z = [m(t),a_1(t-1),..,a_p(t-p),b_1(t-1),...,b_q(t-q)];
% H = [1,y(t-1),..,y(t-p),e(t-1),...,e(t-q)];
% W = E{(z(t)-G*z(t-1))*(z(t)-G*z(t-1))'}
% V = E{(y(t)-H*z(t-1))*(y(t)-H*z(t-1))'}
%
%
% Input:
%       y	Signal (AR-Process)
%       Mode	determines the type of algorithm
%
%       MOP     Model order [m,p,q], default [0,10,0]
%			m=1 includes the mean term, m=0 does not. 
%			p and q must be positive integers
%			it is recommended to set q=0. 
%	UC	Update Coefficient, default 0
%	z0	Initial state vector
%	Z0	Initial Covariance matrix
%      
% Output:
%	z	AR-Parameter
%	E	error process (Adaptively filtered process)
%       REV     relative error variance MSE/MSY
%
% REFERENCE(S): 
% [1] A. Schloegl (2000), The electroencephalogram and the adaptive autoregressive model: theory and applications. 
%     ISBN 3-8265-7640-3 Shaker Verlag, Aachen, Germany. 
%
% More references can be found at 
%     http://pub.ist.ac.at/~schloegl/publications/

%       $Id: aarmam.m 11693 2013-03-04 06:40:14Z schloegl $
%       Copyright (C) 1998-2002,2008,2012 by Alois Schloegl <alois.schloegl@ist.ac.at>
%       This is part of the TSA-toolbox. See also 
%       http://pub.ist.ac.at/~schloegl/matlab/tsa/
%       http://octave.sourceforge.net/
%       http://biosig.sourceforge.net/
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

%#realonly 
%#inbounds

warning('AARMAM is obsolete. Use AMARMA instead!')

[nc,nr]=size(y);

if nargin<2 Mode=0; 
elseif ischar(Mode) Mode=bin2dec(Mode); 
elseif isnan(Mode) return; end;
if nargin<3 MOP=[0,10,0]; end;
if length(MOP)==0,      m=0;p=10; q=0; MOP=p;
elseif length(MOP)==1,  m=0;p=MOP(1); q=0; MOP=p;
elseif length(MOP)==2,  fprintf(1,'Error AMARMA: MOP is ambiguos\n');
elseif length(MOP)>2,   m=MOP(1); p=MOP(2); q=MOP(3);MOP=m+p+q;
end;

if prod(size(Mode))>1
        aMode=Mode(1);
        eMode=Mode(2);
end;
%fprintf(1,['a' int2str(aMode) 'e' int2str(eMode) ' ']);


e=zeros(nc,1);
V=zeros(nc,1);V(1)=V0;
T=zeros(nc,1);
ESU=zeros(nc,1)+nan;
SPUR=zeros(nc,1)+nan;
z=z0(ones(nc,1),:);

arc=poly((1-UC*2)*[1;1]);b0=sum(arc); % Whale forgetting factor for Mode=258,(Bianci et al. 1997)

dW=UC/MOP*eye(MOP);                % Schloegl


%------------------------------------------------
%	First Iteration
%------------------------------------------------

H = zeros(MOP,1); 
if m, 
        H(1) = 1;%M0; 
        if m~=1,
                fprintf(2,'Warning AARMAM: m must be 0 or 1\n');
		return;        
        end;
end; 
if (p<0) || (q<0) || (round(p)~=p) || (round(q)~=q),
        fprintf(2,'Error AARMAM: p and q must be positive integers\n');
	return;        
end;

E = 0;
Z = Z0;
zt= z0;

A1 = zeros(MOP); A2 = A1;

y_1=0;

%------------------------------------------------
%	Update Equations
%------------------------------------------------

for t=1:nc,
        
        % make measurement matrix
        if 0,
                if t>1, 
                        y_1 = y(t-1);
                end;
                H=[1; y_1; H(m+(1:p-1)'); E(1:min(1,q-1)) ; H(p+m+(1:q-1)')];  % shift y and e
                
        else    % this seem to be slightly faster 
                if t<=p, H(m+(1:t-1)) = y(t-1:-1:1);    % Autoregressive 
                else     H(m+(1:p))   = y(t-1:-1:t-p); 
                end;
                
                if t<=q, H(m+p+(1:t-1)) = e(t-1:-1:1);  % Moving Average
                else     H(m+p+(1:q)) = e(t-1:-1:t-q); 
                end;
        end;
        
        % Prediction Error 
        E = y(t) - zt*H;
        e(t) = E;
        
        if ~isnan(E),
                E2 = E*E;
                AY = Z*H; 
                
                ESU(t) = H'*AY;
                
                if eMode==1
                        V0 = V(t-1);
                        V(t) = V0*(1-UC)+UC*E2;        
                elseif eMode==2
                        V0 = 1;
                        V(t) = V0; %V(t-1)*(1-UC)+UC*E2;        
                elseif eMode==3
                        V0 = 1-UC;
                        V(t) = V0; %(t-1)*(1-UC)+UC*E2;        
                elseif eMode==4
                        V0 = V0*(1-UC)+UC*E2;        
                        V(t) = V0;
                elseif eMode==5
                        V(t)=V0;
                        %V0 = V0;
                elseif eMode==6
                        if E2>ESU(t), 
                                V0=(1-UC)*V0+UC*(E2-ESU(t));
                        end;
                        V(t)=V0;
                elseif eMode==7
                        V0=V(t); 
                        if E2>ESU(t) 
                                V(t) = (1-UC)*V0+UC*(E2-ESU(t));
                        else 
                                V(t) = V0;
                        end;
                elseif eMode==8
                        V0=0;
                        V(t) = V0; % (t-1)*(1-UC)+UC*E2;        
                end;
                
                k = AY / (ESU(t) + V0);		% Kalman Gain
                zt = zt + k'*E;
                %z(t,:) = zt;
                
                if aMode==2
                        T(t)=(1-UC)*T(t-1)+UC*(E2-Q(t))/(H'*H);   % Roberts I 1998
                        Z=Z*V(t-1)/Q(t);  
                        if T(t)>0 W=T(t)*eye(MOP); else W=zeros(MOP);end;          
                elseif aMode==5
                        Q_wo = (H'*C*H + V(t-1));                 % Roberts II 1998
                        T(t)=(1-UC)*T(t-1)+UC*(E2-Q_wo)/(H'*H);      
                        if T(t)>0 W=T(t)*eye(MOP); else W=zeros(MOP); end;          
                elseif aMode==6
                        T(t)=(1-UC)*T(t-1)+UC*(E2-Q(t))/(H'*H);      
                        Z=Z*V(t)/Q(t);  
                        if T(t)>0 W=T(t)*eye(MOP); else W=zeros(MOP); end;          
                elseif aMode==11
                        %Z = Z - k*AY';
                        W = sum(diag(Z))*dW;
                elseif aMode==12
                        W = UC*UC*eye(MOP);
                elseif aMode==13
                        W = UC*diag(diag(Z));
                elseif aMode==14
                        W = (UC*UC)*diag(diag(Z));
                elseif aMode==15
                        W = sum(diag(Z))*dW;
                elseif aMode==16
                        W = UC*eye(MOP);               % Schloegl 1998
                        %elseif aMode==17
                        %W=W;
                end;
                
                Z = Z - k*AY';               % Schloegl 1998
        else
                
                V(t) = V0;
                
        end;     
        
        if any(any(isnan(W))), W=UC*Z;end;
        
        z(t,:) = zt;
        Z   = Z + W;               % Schloegl 1998
        SPUR(t) = trace(Z);
end;

REV = mean(e.*e)/mean(y.*y);
if any(~isfinite(Z(:))), REV=inf; end;