This file is indexed.

/usr/share/octave/packages/optim-1.4.1/cg_min.m is in octave-optim 1.4.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
## Copyright (C) 2002 Etienne Grossmann <etienne@egdn.net>
## Copyright (C) 2009 Levente Torok <TorokLev@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{x0},@var{v},@var{nev}]} cg_min ( @var{f},@var{df},@var{args},@var{ctl} )
## NonLinear Conjugate Gradient method to minimize function @var{f}.
##
## @subheading Arguments
## @itemize @bullet
## @item @var{f}   : string   : Name of function. Return a real value 
## @item @var{df}  : string   : Name of f's derivative. Returns a (R*C) x 1 vector 
## @item @var{args}: cell     : Arguments passed to f.@*
## @item @var{ctl}   : 5-vec    : (Optional) Control variables, described below
## @end itemize
##
## @subheading Returned values
## @itemize @bullet
## @item @var{x0}    : matrix   : Local minimum of f
## @item @var{v}     : real     : Value of f in x0
## @item @var{nev}   : 1 x 2    : Number of evaluations of f and of df
## @end itemize
##
## @subheading Control Variables
## @itemize @bullet
## @item @var{ctl}(1)       : 1 or 2 : Select stopping criterion amongst :
## @item @var{ctl}(1)==0    : Default value
## @item @var{ctl}(1)==1    : Stopping criterion : Stop search when value doesn't
## improve, as tested by @math{ ctl(2) > Deltaf/max(|f(x)|,1) }
## where Deltaf is the decrease in f observed in the last iteration
## (each iteration consists R*C line searches).
## @item @var{ctl}(1)==2    : Stopping criterion : Stop search when updates are small,
## as tested by @math{ ctl(2) > max @{ dx(i)/max(|x(i)|,1) | i in 1..N @}}
## where  dx is the change in the x that occured in the last iteration.
## @item @var{ctl}(2)       : Threshold used in stopping tests.           Default=10*eps
## @item @var{ctl}(2)==0    : Default value
## @item @var{ctl}(3)       : Position of the minimized argument in args  Default=1
## @item @var{ctl}(3)==0    : Default value
## @item @var{ctl}(4)       : Maximum number of function evaluations      Default=inf
## @item @var{ctl}(4)==0    : Default value
## @item @var{ctl}(5)       : Type of optimization:
## @item @var{ctl}(5)==1    : "Fletcher-Reves" method
## @item @var{ctl}(5)==2    : "Polak-Ribiere" (Default)
## @item @var{ctl}(5)==3    : "Hestenes-Stiefel" method
## @end itemize
##
## @var{ctl} may have length smaller than 4. Default values will be used if ctl is
## not passed or if nan values are given.
## @subheading Example:
##
## function r=df( l )  b=[1;0;-1]; r = -( 2*l@{1@} - 2*b + rand(size(l@{1@}))); endfunction @*
## function r=ff( l )  b=[1;0;-1]; r = (l@{1@}-b)' * (l@{1@}-b); endfunction @*
## ll = @{ [10; 2; 3] @}; @*
## ctl(5) = 3; @*
## [x0,v,nev]=cg_min( "ff", "df", ll, ctl ) @*
## 
## Comment:  In general, BFGS method seems to be better performin in many cases but requires more computation per iteration
## See also http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient.
## @seealso{bfgsmin}
## @end deftypefn

function [x,v,nev] = cg_min (f, dfn, args, ctl)

verbose = 0;

crit = 1;			# Default control variables
tol = 10*eps;
narg = 1;
maxev = inf;
method = 2;

if nargin >= 4,			# Read arguments
  if                    !isnan (ctl(1)) && ctl(1) ~= 0, crit  = ctl(1); end
  if length (ctl)>=2 && !isnan (ctl(2)) && ctl(2) ~= 0, tol   = ctl(2); end
  if length (ctl)>=3 && !isnan (ctl(3)) && ctl(3) ~= 0, narg  = ctl(3); end
  if length (ctl)>=4 && !isnan (ctl(4)) && ctl(4) ~= 0, maxev = ctl(4); end
  if length (ctl)>=5 && !isnan (ctl(5)) && ctl(5) ~= 0, method= ctl(5); end
end

if iscell (args),		# List of arguments 
  x = args{narg};
else					# Single argument
  x = args;
  args = {args};
end

if narg > length (args),	# Check
  error ("cg_min : narg==%i, length (args)==%i\n",
	 narg, length (args));
end

[R, C] = size(x);
N = R*C;
x = reshape (x,N,1) ;

nev = [0, 0];

v = feval (f, args);
nev(1)++;

dxn = lxn = dxn_1 = -feval( dfn, args );
nev(2)++;

done = 0;

## TEMP
## tb = ts = zeros (1,100);

				# Control params for line search
ctlb = [10*sqrt(eps), narg, maxev];
if crit == 2, ctlb(1) = tol; end

x0 = x;
v0 = v;

nline = 0;
while nev(1) <= maxev ,
  ## xprev = x ;
  ctlb(3) = maxev - nev(1);	# Update # of evals


  ## wiki alg 4.
  [alpha, vnew, nev0] = brent_line_min (f, dxn, args, ctlb);

  nev += nev0;
  ## wiki alg 5.
  x = x + alpha * dxn;

  if nline >= N,
    if crit == 1,
      done = tol > (v0 - vnew) / max (1, abs (v0));
    else
      done = tol > norm ((x-x0)(:));
    end
    nline = 1;
    x0 = x;
    v0 = vnew;
  else
    nline++;
  end
  if done || nev(1) >= maxev,  return  end
  
  if vnew > v + eps ,
    printf("cg_min: step increased cost function\n");
    keyboard
  end
  
  # if abs(1-(x-xprev)'*dxn/norm(dxn)/norm(x-xprev))>1000*eps,
  #  printf("cg_min: step is not in the right direction\n");
  #  keyboard
  # end
  
  # update x at the narg'th position of args cellarray
  args{narg} = reshape (x, R, C);

  v = feval (f, args);
  nev(1)++;

  if verbose, printf("cg_min : nev=%4i, v=%8.3g\n",nev(1),v) ; end

  ## wiki alg 1:
  dxn = -feval (dfn, args);
  nev(2)++;

  # wiki alg 2:
  switch method
  
    case 1 # Fletcher-Reenves method
	  nu = dxn' * dxn;
      de  = dxn_1' * dxn_1;

    case 2 # Polak-Ribiere method
      nu = (dxn-dxn_1)' * dxn;
      de  = dxn_1' * dxn_1;

    case 3 # Hestenes-Stiefel method
      nu = (dxn-dxn_1)' * dxn;
	  de  = (dxn-dxn_1)' * lxn;

	otherwise
      error("No method like this");

  endswitch

  if nu == 0,
  	return
  endif
  
  if de == 0,
    error("Numerical instability!");
  endif
  beta = nu / de;
  beta = max( 0, beta );
  ## wiki alg 3.   update dxn, lxn, point 
  dxn_1 = dxn;
  dxn = lxn = dxn_1 + beta*lxn ;

end

if verbose, printf ("cg_min: Too many evaluatiosn!\n"); end

endfunction

%!demo
%! P = 15; # Number of parameters
%! R = 20; # Number of observations (must have R >= P)
%! 
%! obsmat = randn (R, P);
%! truep = randn (P, 1);
%! xinit = randn (P, 1);
%! obses = obsmat * truep;
%! 
%! msq = @(x) mean (x (!isnan(x)).^2);
%! ff  = @(x) msq (obses - obsmat * x{1}) + 1;
%! dff = @(x) 2 / rows (obses) * obsmat.' * (-obses + obsmat * x{1});
%! 
%! tic;
%! [xlev,vlev,nlev] = cg_min (ff, dff, xinit) ;
%! toc;
%! 
%! printf ("  Costs :     init=%8.3g, final=%8.3g, best=%8.3g\n", ...
%!         ff ({xinit}), vlev, ff ({truep}));
%! 
%! if (max (abs (xlev-truep)) > 100*sqrt (eps))
%!   printf ("Error is too big : %8.3g\n", max (abs (xlev-truep)));
%! else
%!   printf ("All tests ok\n");
%! endif

%!demo
%! N = 1 + floor (30 * rand ());
%! truemin = randn (N, 1);
%! offset  = 100 * randn ();
%! metric = randn (2 * N, N); 
%! metric = metric.' * metric;
%! 
%! if (N > 1)
%!   [u,d,v] = svd (metric);
%!   d = (0.1+[0:(1/(N-1)):1]).^2;
%!   metric = u * diag (d) * u.';
%! endif
%! 
%! testfunc = @(x) sum((x{1}-truemin)'*metric*(x{1}-truemin)) + offset;
%! dtestf = @(x) metric' * 2*(x{1}-truemin);
%! 
%! xinit = 10 * randn (N, 1);
%! 
%! [x, v, niter] = cg_min (testfunc, dtestf, xinit);
%! 
%! if (any (abs (x-truemin) > 100 * sqrt(eps)))
%!   printf ("NOT OK 1\n");
%! else
%!   printf ("OK 1\n");
%! endif
%! 
%! if (v-offset > 1e-8)
%!   printf ("NOT OK 2\n");
%! else
%!   printf ("OK 2\n");
%! endif
%! 
%! printf ("nev=%d  N=%d  errx=%8.3g   errv=%8.3g\n",...
%!         niter (1), N, max (abs (x-truemin)), v-offset);

%!demo
%! P = 2; # Number of parameters
%! R = 3; # Number of observations
%! 
%! obsmat = randn (R, P);
%! truep  = randn (P, 1);
%! xinit  = randn (P, 1);
%! 
%! obses = obsmat * truep;
%! 
%! msq = @(x) mean (x (!isnan(x)).^2);
%! ff = @(xx) msq (xx{3} - xx{2} * xx{1}) + 1;
%! dff = @(xx) 2 / rows(xx{3}) * xx{2}.' * (-xx{3} + xx{2}*xx{1});
%! 
%! tic;
%! x = {xinit, obsmat, obses};
%! [xlev, vlev, nlev] = cg_min (ff, dff, x);
%! toc;
%! 
%! xinit_ = {xinit, obsmat, obses};
%! xtrue_ = {truep, obsmat, obses};
%! printf ("  Costs :     init=%8.3g, final=%8.3g, best=%8.3g\n", ...
%!         ff (xinit_), vlev, ff (xtrue_));
%! 
%! if (max (abs(xlev-truep)) > 100*sqrt (eps))
%!   printf ("Error is too big : %8.3g\n", max (abs (xlev-truep)));
%! else
%!   printf ("All tests ok\n");
%! endif