/usr/share/octave/packages/mpi-1.2.0/doc-cache is in octave-mpi 1.2.0-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | # doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 8
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
Pi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 716
-- Function File: [RESULT] = Pi ()
Classical MPI example that computes PI by integrating arctan'(x) in
[0,1]. N [1e7] #subdivisions of the [0, 1] interval. MOD ['s']
communication modality: (s)end (r)educe. RESULTS struct contains
- PI: estimated pi value
- ERR: error
- TIME: from argument xmit to pi computed
To run this example, set the variables HOSTFILE and
NUMBER_OF_MPI_NODES to appropriate values, then type the following
command in your shell:
mpirun --hostfile $HOSTFILE -np $NUMBER_OF_MPI_NODES octave --eval 'pkg load mpi; Pi ()'
See also:
hello2dimmat,helloworld,hellocell,hellosparsemat,mc_example,montecarlo,hellostruct.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Classical MPI example that computes PI by integrating arctan'(x) in
[0,1].
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
hello2dimmat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 588
-- Function File: = hello2dimmat ()
This function demonstrates sending and receiving of a 2-dimensional
matrix over MPI. Each process in the pool will create a random
90x90 matrix and send it to process with rank 0. To run this
example, set the variables HOSTFILE and NUMBER_OF_MPI_NODES to
appropriate values, then type the following command in your shell:
mpirun --hostfile $HOSTFILE -np $NUMBER_OF_MPI_NODES octave --eval 'pkg load mpi; hello2dimmat ()'
See also:
hellocell,hellosparsemat,hellostruct,helloworld,mc_example,montecarlo,Pi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
This function demonstrates sending and receiving of a 2-dimensional
matrix over
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
hellocell
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 566
-- Function File: = hellocell ()
This function demonstrates sending and receiving a string message
over MPI. Each process will send a message to process with rank 0,
which will then display it. To run this example, set the variables
HOSTFILE and NUMBER_OF_MPI_NODES to appropriate values, then type
the following command in your shell:
mpirun --hostfile $HOSTFILE -np $NUMBER_OF_MPI_NODES octave --eval 'pkg load mpi; hellocell ()'
See also:
hello2dimmat,helloworld,hellosparsemat,hellostruct,mc_example,montecarlo,Pi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
This function demonstrates sending and receiving a string message over
MPI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
hellosparsemat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 578
-- Function File: = hellosparsemat ()
This function demonstrates sending and receiving a sparse matrix
over MPI. Each process will send a a sparse matrix to process with
rank 0, which will then display it. To run this example, set the
variables HOSTFILE and NUMBER_OF_MPI_NODES to appropriate values,
then type the following command in your shell:
mpirun --hostfile $HOSTFILE -np $NUMBER_OF_MPI_NODES octave --eval 'pkg load mpi; hellosparsemat ()'
See also:
hello2dimmat,helloworld,hellocell,hellostruct,mc_example,montecarlo,Pi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
This function demonstrates sending and receiving a sparse matrix over
MPI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
hellostruct
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 561
-- Function File: = hellostruct ()
This function demonstrates sending and receiving a struct over MPI.
Each process will send a a struct to process with rank 0, which
will then display it. To run this example, set the variables
HOSTFILE and NUMBER_OF_MPI_NODES to appropriate values, then type
the following command in your shell:
mpirun --hostfile $HOSTFILE -np $NUMBER_OF_MPI_NODES octave --eval 'pkg load mpi; hellostruct ()'
See also:
hello2dimmat,helloworld,hellocell,hellosparsemat,mc_example,montecarlo,Pi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
This function demonstrates sending and receiving a struct over MPI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
helloworld
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 567
-- Function File: = helloworld ()
This function demonstrates sending and receiving a string message
over MPI. Each process will send a message to process with rank 0,
which will then display it. To run this example, set the variables
HOSTFILE and NUMBER_OF_MPI_NODES to appropriate values, then type
the following command in your shell:
mpirun --hostfile $HOSTFILE -np $NUMBER_OF_MPI_NODES octave --eval 'pkg load mpi; helloworld ()'
See also:
hello2dimmat,hellocell,hellosparsemat,hellostruct,mc_example,montecarlo,Pi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 75
This function demonstrates sending and receiving a string message over
MPI.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
mc_example
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 241
-- Function File: = mc_example ()
Demonstrates doing Monte Carlo with mpi. Does Monte Carlo on the
OLS estimator. Uses montecarlo.m
See also:
hello2dimmat,helloworld,hellocell,hellosparsemat,Pi,montecarlo,hellostruct.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Demonstrates doing Monte Carlo with mpi.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
montecarlo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1093
-- Function File: [N_RECEIVED] = montecarlo (F, F_ARGS, REPS, OUTFILE,
N_POOLED, N_RETURNS, USEMPI, VERBOSE)
Generate a specified number of replications of a function's output
and write them to a user-specified output file.
IMPORTANT: F should return a row vector of output from feval (f,
f_args)
For normal evaluation on one core, only the first 4 arguments are
required.
- Arg 1: (required) the function that generates a row vector of
output
- Arg 2: (required) the arguments of the function, in a cell
- Arg 3: (required) the number of replications to generate
- Arg 4: (required) the output file name
- Arg 5 (optional) number of replications to be pooled together
between writes
- Arg 6 (optional) verbose: 1 for on, 0 for off
If using MPI, you should run using ranks equal to number of cores
plus 1, and should make sure that the core running the frontend is
also the one that has the second rank. That way the core the
frontend is on will also do work.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Generate a specified number of replications of a function's output and
write the
|