/usr/lib/ocaml/hashtbl.mli is in ocaml-nox 4.02.3-5ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | (***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(** Hash tables and hash functions.
Hash tables are hashed association tables, with in-place modification.
*)
(** {6 Generic interface} *)
type ('a, 'b) t
(** The type of hash tables from type ['a] to type ['b]. *)
val create : ?random:bool -> int -> ('a, 'b) t
(** [Hashtbl.create n] creates a new, empty hash table, with
initial size [n]. For best results, [n] should be on the
order of the expected number of elements that will be in
the table. The table grows as needed, so [n] is just an
initial guess.
The optional [random] parameter (a boolean) controls whether
the internal organization of the hash table is randomized at each
execution of [Hashtbl.create] or deterministic over all executions.
A hash table that is created with [~random:false] uses a
fixed hash function ({!Hashtbl.hash}) to distribute keys among
buckets. As a consequence, collisions between keys happen
deterministically. In Web-facing applications or other
security-sensitive applications, the deterministic collision
patterns can be exploited by a malicious user to create a
denial-of-service attack: the attacker sends input crafted to
create many collisions in the table, slowing the application down.
A hash table that is created with [~random:true] uses the seeded
hash function {!Hashtbl.seeded_hash} with a seed that is randomly
chosen at hash table creation time. In effect, the hash function
used is randomly selected among [2^{30}] different hash functions.
All these hash functions have different collision patterns,
rendering ineffective the denial-of-service attack described above.
However, because of randomization, enumerating all elements of the
hash table using {!Hashtbl.fold} or {!Hashtbl.iter} is no longer
deterministic: elements are enumerated in different orders at
different runs of the program.
If no [~random] parameter is given, hash tables are created
in non-random mode by default. This default can be changed
either programmatically by calling {!Hashtbl.randomize} or by
setting the [R] flag in the [OCAMLRUNPARAM] environment variable.
@before 4.00.0 the [random] parameter was not present and all
hash tables were created in non-randomized mode. *)
val clear : ('a, 'b) t -> unit
(** Empty a hash table. Use [reset] instead of [clear] to shrink the
size of the bucket table to its initial size. *)
val reset : ('a, 'b) t -> unit
(** Empty a hash table and shrink the size of the bucket table
to its initial size.
@since 4.00.0 *)
val copy : ('a, 'b) t -> ('a, 'b) t
(** Return a copy of the given hashtable. *)
val add : ('a, 'b) t -> 'a -> 'b -> unit
(** [Hashtbl.add tbl x y] adds a binding of [x] to [y] in table [tbl].
Previous bindings for [x] are not removed, but simply
hidden. That is, after performing {!Hashtbl.remove}[ tbl x],
the previous binding for [x], if any, is restored.
(Same behavior as with association lists.) *)
val find : ('a, 'b) t -> 'a -> 'b
(** [Hashtbl.find tbl x] returns the current binding of [x] in [tbl],
or raises [Not_found] if no such binding exists. *)
val find_all : ('a, 'b) t -> 'a -> 'b list
(** [Hashtbl.find_all tbl x] returns the list of all data
associated with [x] in [tbl].
The current binding is returned first, then the previous
bindings, in reverse order of introduction in the table. *)
val mem : ('a, 'b) t -> 'a -> bool
(** [Hashtbl.mem tbl x] checks if [x] is bound in [tbl]. *)
val remove : ('a, 'b) t -> 'a -> unit
(** [Hashtbl.remove tbl x] removes the current binding of [x] in [tbl],
restoring the previous binding if it exists.
It does nothing if [x] is not bound in [tbl]. *)
val replace : ('a, 'b) t -> 'a -> 'b -> unit
(** [Hashtbl.replace tbl x y] replaces the current binding of [x]
in [tbl] by a binding of [x] to [y]. If [x] is unbound in [tbl],
a binding of [x] to [y] is added to [tbl].
This is functionally equivalent to {!Hashtbl.remove}[ tbl x]
followed by {!Hashtbl.add}[ tbl x y]. *)
val iter : ('a -> 'b -> unit) -> ('a, 'b) t -> unit
(** [Hashtbl.iter f tbl] applies [f] to all bindings in table [tbl].
[f] receives the key as first argument, and the associated value
as second argument. Each binding is presented exactly once to [f].
The order in which the bindings are passed to [f] is unspecified.
However, if the table contains several bindings for the same key,
they are passed to [f] in reverse order of introduction, that is,
the most recent binding is passed first.
If the hash table was created in non-randomized mode, the order
in which the bindings are enumerated is reproducible between
successive runs of the program, and even between minor versions
of OCaml. For randomized hash tables, the order of enumeration
is entirely random. *)
val fold : ('a -> 'b -> 'c -> 'c) -> ('a, 'b) t -> 'c -> 'c
(** [Hashtbl.fold f tbl init] computes
[(f kN dN ... (f k1 d1 init)...)],
where [k1 ... kN] are the keys of all bindings in [tbl],
and [d1 ... dN] are the associated values.
Each binding is presented exactly once to [f].
The order in which the bindings are passed to [f] is unspecified.
However, if the table contains several bindings for the same key,
they are passed to [f] in reverse order of introduction, that is,
the most recent binding is passed first.
If the hash table was created in non-randomized mode, the order
in which the bindings are enumerated is reproducible between
successive runs of the program, and even between minor versions
of OCaml. For randomized hash tables, the order of enumeration
is entirely random. *)
val length : ('a, 'b) t -> int
(** [Hashtbl.length tbl] returns the number of bindings in [tbl].
It takes constant time. Multiple bindings are counted once each, so
[Hashtbl.length] gives the number of times [Hashtbl.iter] calls its
first argument. *)
val randomize : unit -> unit
(** After a call to [Hashtbl.randomize()], hash tables are created in
randomized mode by default: {!Hashtbl.create} returns randomized
hash tables, unless the [~random:false] optional parameter is given.
The same effect can be achieved by setting the [R] parameter in
the [OCAMLRUNPARAM] environment variable.
It is recommended that applications or Web frameworks that need to
protect themselves against the denial-of-service attack described
in {!Hashtbl.create} call [Hashtbl.randomize()] at initialization
time.
Note that once [Hashtbl.randomize()] was called, there is no way
to revert to the non-randomized default behavior of {!Hashtbl.create}.
This is intentional. Non-randomized hash tables can still be
created using [Hashtbl.create ~random:false].
@since 4.00.0 *)
type statistics = {
num_bindings: int;
(** Number of bindings present in the table.
Same value as returned by {!Hashtbl.length}. *)
num_buckets: int;
(** Number of buckets in the table. *)
max_bucket_length: int;
(** Maximal number of bindings per bucket. *)
bucket_histogram: int array
(** Histogram of bucket sizes. This array [histo] has
length [max_bucket_length + 1]. The value of
[histo.(i)] is the number of buckets whose size is [i]. *)
}
val stats : ('a, 'b) t -> statistics
(** [Hashtbl.stats tbl] returns statistics about the table [tbl]:
number of buckets, size of the biggest bucket, distribution of
buckets by size.
@since 4.00.0 *)
(** {6 Functorial interface} *)
(** The functorial interface allows the use of specific comparison
and hash functions, either for performance/security concerns,
or because keys are not hashable/comparable with the polymorphic builtins.
For instance, one might want to specialize a table for integer keys:
{[
module IntHash =
struct
type t = int
let equal i j = i=j
let hash i = i land max_int
end
module IntHashtbl = Hashtbl.Make(IntHash)
let h = IntHashtbl.create 17 in
IntHashtbl.add h 12 "hello";;
]}
This creates a new module [IntHashtbl], with a new type ['a
IntHashtbl.t] of tables from [int] to ['a]. In this example, [h]
contains [string] values so its type is [string IntHashtbl.t].
Note that the new type ['a IntHashtbl.t] is not compatible with
the type [('a,'b) Hashtbl.t] of the generic interface. For
example, [Hashtbl.length h] would not type-check, you must use
[IntHashtbl.length].
*)
module type HashedType =
sig
type t
(** The type of the hashtable keys. *)
val equal : t -> t -> bool
(** The equality predicate used to compare keys. *)
val hash : t -> int
(** A hashing function on keys. It must be such that if two keys are
equal according to [equal], then they have identical hash values
as computed by [hash].
Examples: suitable ([equal], [hash]) pairs for arbitrary key
types include
- ([(=)], {!Hashtbl.hash}) for comparing objects by structure
(provided objects do not contain floats)
- ([(fun x y -> compare x y = 0)], {!Hashtbl.hash})
for comparing objects by structure
and handling {!Pervasives.nan} correctly
- ([(==)], {!Hashtbl.hash}) for comparing objects by physical
equality (e.g. for mutable or cyclic objects). *)
end
(** The input signature of the functor {!Hashtbl.Make}. *)
module type S =
sig
type key
type 'a t
val create : int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length : 'a t -> int
val stats: 'a t -> statistics
end
(** The output signature of the functor {!Hashtbl.Make}. *)
module Make (H : HashedType) : S with type key = H.t
(** Functor building an implementation of the hashtable structure.
The functor [Hashtbl.Make] returns a structure containing
a type [key] of keys and a type ['a t] of hash tables
associating data of type ['a] to keys of type [key].
The operations perform similarly to those of the generic
interface, but use the hashing and equality functions
specified in the functor argument [H] instead of generic
equality and hashing. Since the hash function is not seeded,
the [create] operation of the result structure always returns
non-randomized hash tables. *)
module type SeededHashedType =
sig
type t
(** The type of the hashtable keys. *)
val equal: t -> t -> bool
(** The equality predicate used to compare keys. *)
val hash: int -> t -> int
(** A seeded hashing function on keys. The first argument is
the seed. It must be the case that if [equal x y] is true,
then [hash seed x = hash seed y] for any value of [seed].
A suitable choice for [hash] is the function {!Hashtbl.seeded_hash}
below. *)
end
(** The input signature of the functor {!Hashtbl.MakeSeeded}.
@since 4.00.0 *)
module type SeededS =
sig
type key
type 'a t
val create : ?random:bool -> int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length : 'a t -> int
val stats: 'a t -> statistics
end
(** The output signature of the functor {!Hashtbl.MakeSeeded}.
@since 4.00.0 *)
module MakeSeeded (H : SeededHashedType) : SeededS with type key = H.t
(** Functor building an implementation of the hashtable structure.
The functor [Hashtbl.MakeSeeded] returns a structure containing
a type [key] of keys and a type ['a t] of hash tables
associating data of type ['a] to keys of type [key].
The operations perform similarly to those of the generic
interface, but use the seeded hashing and equality functions
specified in the functor argument [H] instead of generic
equality and hashing. The [create] operation of the
result structure supports the [~random] optional parameter
and returns randomized hash tables if [~random:true] is passed
or if randomization is globally on (see {!Hashtbl.randomize}).
@since 4.00.0 *)
(** {6 The polymorphic hash functions} *)
val hash : 'a -> int
(** [Hashtbl.hash x] associates a nonnegative integer to any value of
any type. It is guaranteed that
if [x = y] or [Pervasives.compare x y = 0], then [hash x = hash y].
Moreover, [hash] always terminates, even on cyclic structures. *)
val seeded_hash : int -> 'a -> int
(** A variant of {!Hashtbl.hash} that is further parameterized by
an integer seed.
@since 4.00.0 *)
val hash_param : int -> int -> 'a -> int
(** [Hashtbl.hash_param meaningful total x] computes a hash value for [x],
with the same properties as for [hash]. The two extra integer
parameters [meaningful] and [total] give more precise control over
hashing. Hashing performs a breadth-first, left-to-right traversal
of the structure [x], stopping after [meaningful] meaningful nodes
were encountered, or [total] nodes (meaningful or not) were
encountered. If [total] as specified by the user exceeds a certain
value, currently 256, then it is capped to that value.
Meaningful nodes are: integers; floating-point
numbers; strings; characters; booleans; and constant
constructors. Larger values of [meaningful] and [total] means that
more nodes are taken into account to compute the final hash value,
and therefore collisions are less likely to happen. However,
hashing takes longer. The parameters [meaningful] and [total]
govern the tradeoff between accuracy and speed. As default
choices, {!Hashtbl.hash} and {!Hashtbl.seeded_hash} take
[meaningful = 10] and [total = 100]. *)
val seeded_hash_param : int -> int -> int -> 'a -> int
(** A variant of {!Hashtbl.hash_param} that is further parameterized by
an integer seed. Usage:
[Hashtbl.seeded_hash_param meaningful total seed x].
@since 4.00.0 *)
|