/usr/lib/nim/system/arithm.nim is in nim 0.12.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | #
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# simple integer arithmetic with overflow checking
proc raiseOverflow {.compilerproc, noinline.} =
# a single proc to reduce code size to a minimum
sysFatal(OverflowError, "over- or underflow")
proc raiseDivByZero {.compilerproc, noinline.} =
sysFatal(DivByZeroError, "division by zero")
when defined(builtinOverflow):
# Builtin compiler functions for improved performance
when sizeof(clong) == 8:
proc addInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
importc: "__builtin_saddl_overflow", nodecl, nosideeffect.}
proc subInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
importc: "__builtin_ssubl_overflow", nodecl, nosideeffect.}
proc mulInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
importc: "__builtin_smull_overflow", nodecl, nosideeffect.}
elif sizeof(clonglong) == 8:
proc addInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
importc: "__builtin_saddll_overflow", nodecl, nosideeffect.}
proc subInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
importc: "__builtin_ssubll_overflow", nodecl, nosideeffect.}
proc mulInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
importc: "__builtin_smulll_overflow", nodecl, nosideeffect.}
when sizeof(int) == 8:
proc addIntOverflow(a, b: int, c: var int): bool {.inline.} =
addInt64Overflow(a, b, c)
proc subIntOverflow(a, b: int, c: var int): bool {.inline.} =
subInt64Overflow(a, b, c)
proc mulIntOverflow(a, b: int, c: var int): bool {.inline.} =
mulInt64Overflow(a, b, c)
elif sizeof(int) == 4 and sizeof(cint) == 4:
proc addIntOverflow(a, b: int, c: var int): bool {.
importc: "__builtin_sadd_overflow", nodecl, nosideeffect.}
proc subIntOverflow(a, b: int, c: var int): bool {.
importc: "__builtin_ssub_overflow", nodecl, nosideeffect.}
proc mulIntOverflow(a, b: int, c: var int): bool {.
importc: "__builtin_smul_overflow", nodecl, nosideeffect.}
proc addInt64(a, b: int64): int64 {.compilerProc, inline.} =
if addInt64Overflow(a, b, result):
raiseOverflow()
proc subInt64(a, b: int64): int64 {.compilerProc, inline.} =
if subInt64Overflow(a, b, result):
raiseOverflow()
proc mulInt64(a, b: int64): int64 {.compilerproc, inline.} =
if mulInt64Overflow(a, b, result):
raiseOverflow()
else:
proc addInt64(a, b: int64): int64 {.compilerProc, inline.} =
result = a +% b
if (result xor a) >= int64(0) or (result xor b) >= int64(0):
return result
raiseOverflow()
proc subInt64(a, b: int64): int64 {.compilerProc, inline.} =
result = a -% b
if (result xor a) >= int64(0) or (result xor not b) >= int64(0):
return result
raiseOverflow()
#
# This code has been inspired by Python's source code.
# The native int product x*y is either exactly right or *way* off, being
# just the last n bits of the true product, where n is the number of bits
# in an int (the delivered product is the true product plus i*2**n for
# some integer i).
#
# The native float64 product x*y is subject to three
# rounding errors: on a sizeof(int)==8 box, each cast to double can lose
# info, and even on a sizeof(int)==4 box, the multiplication can lose info.
# But, unlike the native int product, it's not in *range* trouble: even
# if sizeof(int)==32 (256-bit ints), the product easily fits in the
# dynamic range of a float64. So the leading 50 (or so) bits of the float64
# product are correct.
#
# We check these two ways against each other, and declare victory if they're
# approximately the same. Else, because the native int product is the only
# one that can lose catastrophic amounts of information, it's the native int
# product that must have overflowed.
#
proc mulInt64(a, b: int64): int64 {.compilerproc.} =
var
resAsFloat, floatProd: float64
result = a *% b
floatProd = toBiggestFloat(a) # conversion
floatProd = floatProd * toBiggestFloat(b)
resAsFloat = toBiggestFloat(result)
# Fast path for normal case: small multiplicands, and no info
# is lost in either method.
if resAsFloat == floatProd: return result
# Somebody somewhere lost info. Close enough, or way off? Note
# that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
# The difference either is or isn't significant compared to the
# true value (of which floatProd is a good approximation).
# abs(diff)/abs(prod) <= 1/32 iff
# 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
return result
raiseOverflow()
proc negInt64(a: int64): int64 {.compilerProc, inline.} =
if a != low(int64): return -a
raiseOverflow()
proc absInt64(a: int64): int64 {.compilerProc, inline.} =
if a != low(int64):
if a >= 0: return a
else: return -a
raiseOverflow()
proc divInt64(a, b: int64): int64 {.compilerProc, inline.} =
if b == int64(0):
raiseDivByZero()
if a == low(int64) and b == int64(-1):
raiseOverflow()
return a div b
proc modInt64(a, b: int64): int64 {.compilerProc, inline.} =
if b == int64(0):
raiseDivByZero()
return a mod b
proc absInt(a: int): int {.compilerProc, inline.} =
if a != low(int):
if a >= 0: return a
else: return -a
raiseOverflow()
const
asmVersion = defined(I386) and (defined(vcc) or defined(wcc) or
defined(dmc) or defined(gcc) or defined(llvm_gcc))
# my Version of Borland C++Builder does not have
# tasm32, which is needed for assembler blocks
# this is why Borland is not included in the 'when'
when asmVersion and not defined(gcc) and not defined(llvm_gcc):
# assembler optimized versions for compilers that
# have an intel syntax assembler:
proc addInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
# a in eax, and b in edx
asm """
mov eax, ecx
add eax, edx
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
proc subInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
sub eax, edx
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
proc negInt(a: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
neg eax
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
proc divInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
mov ecx, edx
xor edx, edx
idiv ecx
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
proc modInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
mov ecx, edx
xor edx, edx
idiv ecx
jno theEnd
call `raiseOverflow`
theEnd:
mov eax, edx
ret
"""
proc mulInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
asm """
mov eax, ecx
mov ecx, edx
xor edx, edx
imul ecx
jno theEnd
call `raiseOverflow`
theEnd:
ret
"""
elif false: # asmVersion and (defined(gcc) or defined(llvm_gcc)):
proc addInt(a, b: int): int {.compilerProc, inline.} =
# don't use a pure proc here!
asm """
"addl %%ecx, %%eax\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
"""
#".intel_syntax noprefix"
#/* Intel syntax here */
#".att_syntax"
proc subInt(a, b: int): int {.compilerProc, inline.} =
asm """ "subl %%ecx,%%eax\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
"""
proc mulInt(a, b: int): int {.compilerProc, inline.} =
asm """ "xorl %%edx, %%edx\n"
"imull %%ecx\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
:"%edx"
"""
proc negInt(a: int): int {.compilerProc, inline.} =
asm """ "negl %%eax\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`)
"""
proc divInt(a, b: int): int {.compilerProc, inline.} =
asm """ "xorl %%edx, %%edx\n"
"idivl %%ecx\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
:"%edx"
"""
proc modInt(a, b: int): int {.compilerProc, inline.} =
asm """ "xorl %%edx, %%edx\n"
"idivl %%ecx\n"
"jno 1\n"
"call _raiseOverflow\n"
"1: \n"
"movl %%edx, %%eax"
:"=a"(`result`)
:"a"(`a`), "c"(`b`)
:"%edx"
"""
when not declared(addInt) and defined(builtinOverflow):
proc addInt(a, b: int): int {.compilerProc, inline.} =
if addIntOverflow(a, b, result):
raiseOverflow()
when not declared(subInt) and defined(builtinOverflow):
proc subInt(a, b: int): int {.compilerProc, inline.} =
if subIntOverflow(a, b, result):
raiseOverflow()
when not declared(mulInt) and defined(builtinOverflow):
proc mulInt(a, b: int): int {.compilerProc, inline.} =
if mulIntOverflow(a, b, result):
raiseOverflow()
# Platform independent versions of the above (slower!)
when not declared(addInt):
proc addInt(a, b: int): int {.compilerProc, inline.} =
result = a +% b
if (result xor a) >= 0 or (result xor b) >= 0:
return result
raiseOverflow()
when not declared(subInt):
proc subInt(a, b: int): int {.compilerProc, inline.} =
result = a -% b
if (result xor a) >= 0 or (result xor not b) >= 0:
return result
raiseOverflow()
when not declared(negInt):
proc negInt(a: int): int {.compilerProc, inline.} =
if a != low(int): return -a
raiseOverflow()
when not declared(divInt):
proc divInt(a, b: int): int {.compilerProc, inline.} =
if b == 0:
raiseDivByZero()
if a == low(int) and b == -1:
raiseOverflow()
return a div b
when not declared(modInt):
proc modInt(a, b: int): int {.compilerProc, inline.} =
if b == 0:
raiseDivByZero()
return a mod b
when not declared(mulInt):
#
# This code has been inspired by Python's source code.
# The native int product x*y is either exactly right or *way* off, being
# just the last n bits of the true product, where n is the number of bits
# in an int (the delivered product is the true product plus i*2**n for
# some integer i).
#
# The native float64 product x*y is subject to three
# rounding errors: on a sizeof(int)==8 box, each cast to double can lose
# info, and even on a sizeof(int)==4 box, the multiplication can lose info.
# But, unlike the native int product, it's not in *range* trouble: even
# if sizeof(int)==32 (256-bit ints), the product easily fits in the
# dynamic range of a float64. So the leading 50 (or so) bits of the float64
# product are correct.
#
# We check these two ways against each other, and declare victory if
# they're approximately the same. Else, because the native int product is
# the only one that can lose catastrophic amounts of information, it's the
# native int product that must have overflowed.
#
proc mulInt(a, b: int): int {.compilerProc.} =
var
resAsFloat, floatProd: float
result = a *% b
floatProd = toFloat(a) * toFloat(b)
resAsFloat = toFloat(result)
# Fast path for normal case: small multiplicands, and no info
# is lost in either method.
if resAsFloat == floatProd: return result
# Somebody somewhere lost info. Close enough, or way off? Note
# that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
# The difference either is or isn't significant compared to the
# true value (of which floatProd is a good approximation).
# abs(diff)/abs(prod) <= 1/32 iff
# 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
return result
raiseOverflow()
# We avoid setting the FPU control word here for compatibility with libraries
# written in other languages.
proc raiseFloatInvalidOp {.noinline.} =
sysFatal(FloatInvalidOpError, "FPU operation caused a NaN result")
proc nanCheck(x: float64) {.compilerProc, inline.} =
if x != x: raiseFloatInvalidOp()
proc raiseFloatOverflow(x: float64) {.noinline.} =
if x > 0.0:
sysFatal(FloatOverflowError, "FPU operation caused an overflow")
else:
sysFatal(FloatUnderflowError, "FPU operations caused an underflow")
proc infCheck(x: float64) {.compilerProc, inline.} =
if x != 0.0 and x*0.5 == x: raiseFloatOverflow(x)
|