This file is indexed.

/usr/lib/nim/system/arithm.nim is in nim 0.12.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#
#
#            Nim's Runtime Library
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#


# simple integer arithmetic with overflow checking

proc raiseOverflow {.compilerproc, noinline.} =
  # a single proc to reduce code size to a minimum
  sysFatal(OverflowError, "over- or underflow")

proc raiseDivByZero {.compilerproc, noinline.} =
  sysFatal(DivByZeroError, "division by zero")

when defined(builtinOverflow):
  # Builtin compiler functions for improved performance
  when sizeof(clong) == 8:
    proc addInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
      importc: "__builtin_saddl_overflow", nodecl, nosideeffect.}

    proc subInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
      importc: "__builtin_ssubl_overflow", nodecl, nosideeffect.}

    proc mulInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
      importc: "__builtin_smull_overflow", nodecl, nosideeffect.}

  elif sizeof(clonglong) == 8:
    proc addInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
      importc: "__builtin_saddll_overflow", nodecl, nosideeffect.}

    proc subInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
      importc: "__builtin_ssubll_overflow", nodecl, nosideeffect.}

    proc mulInt64Overflow[T: int64|int](a, b: T, c: var T): bool {.
      importc: "__builtin_smulll_overflow", nodecl, nosideeffect.}

  when sizeof(int) == 8:
    proc addIntOverflow(a, b: int, c: var int): bool {.inline.} =
      addInt64Overflow(a, b, c)

    proc subIntOverflow(a, b: int, c: var int): bool {.inline.} =
      subInt64Overflow(a, b, c)

    proc mulIntOverflow(a, b: int, c: var int): bool {.inline.} =
      mulInt64Overflow(a, b, c)

  elif sizeof(int) == 4 and sizeof(cint) == 4:
    proc addIntOverflow(a, b: int, c: var int): bool {.
      importc: "__builtin_sadd_overflow", nodecl, nosideeffect.}

    proc subIntOverflow(a, b: int, c: var int): bool {.
      importc: "__builtin_ssub_overflow", nodecl, nosideeffect.}

    proc mulIntOverflow(a, b: int, c: var int): bool {.
      importc: "__builtin_smul_overflow", nodecl, nosideeffect.}

  proc addInt64(a, b: int64): int64 {.compilerProc, inline.} =
    if addInt64Overflow(a, b, result):
      raiseOverflow()

  proc subInt64(a, b: int64): int64 {.compilerProc, inline.} =
    if subInt64Overflow(a, b, result):
      raiseOverflow()

  proc mulInt64(a, b: int64): int64 {.compilerproc, inline.} =
    if mulInt64Overflow(a, b, result):
      raiseOverflow()
else:
  proc addInt64(a, b: int64): int64 {.compilerProc, inline.} =
    result = a +% b
    if (result xor a) >= int64(0) or (result xor b) >= int64(0):
      return result
    raiseOverflow()

  proc subInt64(a, b: int64): int64 {.compilerProc, inline.} =
    result = a -% b
    if (result xor a) >= int64(0) or (result xor not b) >= int64(0):
      return result
    raiseOverflow()

  #
  # This code has been inspired by Python's source code.
  # The native int product x*y is either exactly right or *way* off, being
  # just the last n bits of the true product, where n is the number of bits
  # in an int (the delivered product is the true product plus i*2**n for
  # some integer i).
  #
  # The native float64 product x*y is subject to three
  # rounding errors: on a sizeof(int)==8 box, each cast to double can lose
  # info, and even on a sizeof(int)==4 box, the multiplication can lose info.
  # But, unlike the native int product, it's not in *range* trouble:  even
  # if sizeof(int)==32 (256-bit ints), the product easily fits in the
  # dynamic range of a float64. So the leading 50 (or so) bits of the float64
  # product are correct.
  #
  # We check these two ways against each other, and declare victory if they're
  # approximately the same. Else, because the native int product is the only
  # one that can lose catastrophic amounts of information, it's the native int
  # product that must have overflowed.
  #
  proc mulInt64(a, b: int64): int64 {.compilerproc.} =
    var
      resAsFloat, floatProd: float64
    result = a *% b
    floatProd = toBiggestFloat(a) # conversion
    floatProd = floatProd * toBiggestFloat(b)
    resAsFloat = toBiggestFloat(result)

    # Fast path for normal case: small multiplicands, and no info
    # is lost in either method.
    if resAsFloat == floatProd: return result

    # Somebody somewhere lost info. Close enough, or way off? Note
    # that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
    # The difference either is or isn't significant compared to the
    # true value (of which floatProd is a good approximation).

    # abs(diff)/abs(prod) <= 1/32 iff
    #   32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
    if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
      return result
    raiseOverflow()

proc negInt64(a: int64): int64 {.compilerProc, inline.} =
  if a != low(int64): return -a
  raiseOverflow()

proc absInt64(a: int64): int64 {.compilerProc, inline.} =
  if a != low(int64):
    if a >= 0: return a
    else: return -a
  raiseOverflow()

proc divInt64(a, b: int64): int64 {.compilerProc, inline.} =
  if b == int64(0):
    raiseDivByZero()
  if a == low(int64) and b == int64(-1):
    raiseOverflow()
  return a div b

proc modInt64(a, b: int64): int64 {.compilerProc, inline.} =
  if b == int64(0):
    raiseDivByZero()
  return a mod b

proc absInt(a: int): int {.compilerProc, inline.} =
  if a != low(int):
    if a >= 0: return a
    else: return -a
  raiseOverflow()

const
  asmVersion = defined(I386) and (defined(vcc) or defined(wcc) or
               defined(dmc) or defined(gcc) or defined(llvm_gcc))
    # my Version of Borland C++Builder does not have
    # tasm32, which is needed for assembler blocks
    # this is why Borland is not included in the 'when'

when asmVersion and not defined(gcc) and not defined(llvm_gcc):
  # assembler optimized versions for compilers that
  # have an intel syntax assembler:
  proc addInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
    # a in eax, and b in edx
    asm """
        mov eax, ecx
        add eax, edx
        jno theEnd
        call `raiseOverflow`
      theEnd:
        ret
    """

  proc subInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
    asm """
        mov eax, ecx
        sub eax, edx
        jno theEnd
        call `raiseOverflow`
      theEnd:
        ret
    """

  proc negInt(a: int): int {.compilerProc, asmNoStackFrame.} =
    asm """
        mov eax, ecx
        neg eax
        jno theEnd
        call `raiseOverflow`
      theEnd:
        ret
    """

  proc divInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
    asm """
        mov eax, ecx
        mov ecx, edx
        xor edx, edx
        idiv ecx
        jno  theEnd
        call `raiseOverflow`
      theEnd:
        ret
    """

  proc modInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
    asm """
        mov eax, ecx
        mov ecx, edx
        xor edx, edx
        idiv ecx
        jno theEnd
        call `raiseOverflow`
      theEnd:
        mov eax, edx
        ret
    """

  proc mulInt(a, b: int): int {.compilerProc, asmNoStackFrame.} =
    asm """
        mov eax, ecx
        mov ecx, edx
        xor edx, edx
        imul ecx
        jno theEnd
        call `raiseOverflow`
      theEnd:
        ret
    """

elif false: # asmVersion and (defined(gcc) or defined(llvm_gcc)):
  proc addInt(a, b: int): int {.compilerProc, inline.} =
    # don't use a pure proc here!
    asm """
      "addl %%ecx, %%eax\n"
      "jno 1\n"
      "call _raiseOverflow\n"
      "1: \n"
      :"=a"(`result`)
      :"a"(`a`), "c"(`b`)
    """
    #".intel_syntax noprefix"
    #/* Intel syntax here */
    #".att_syntax"

  proc subInt(a, b: int): int {.compilerProc, inline.} =
    asm """ "subl %%ecx,%%eax\n"
            "jno 1\n"
            "call _raiseOverflow\n"
            "1: \n"
           :"=a"(`result`)
           :"a"(`a`), "c"(`b`)
    """

  proc mulInt(a, b: int): int {.compilerProc, inline.} =
    asm """  "xorl %%edx, %%edx\n"
             "imull %%ecx\n"
             "jno 1\n"
             "call _raiseOverflow\n"
             "1: \n"
            :"=a"(`result`)
            :"a"(`a`), "c"(`b`)
            :"%edx"
    """

  proc negInt(a: int): int {.compilerProc, inline.} =
    asm """ "negl %%eax\n"
            "jno 1\n"
            "call _raiseOverflow\n"
            "1: \n"
           :"=a"(`result`)
           :"a"(`a`)
    """

  proc divInt(a, b: int): int {.compilerProc, inline.} =
    asm """  "xorl %%edx, %%edx\n"
             "idivl %%ecx\n"
             "jno 1\n"
             "call _raiseOverflow\n"
             "1: \n"
            :"=a"(`result`)
            :"a"(`a`), "c"(`b`)
            :"%edx"
    """

  proc modInt(a, b: int): int {.compilerProc, inline.} =
    asm """  "xorl %%edx, %%edx\n"
             "idivl %%ecx\n"
             "jno 1\n"
             "call _raiseOverflow\n"
             "1: \n"
             "movl %%edx, %%eax"
            :"=a"(`result`)
            :"a"(`a`), "c"(`b`)
            :"%edx"
    """

when not declared(addInt) and defined(builtinOverflow):
  proc addInt(a, b: int): int {.compilerProc, inline.} =
    if addIntOverflow(a, b, result):
      raiseOverflow()

when not declared(subInt) and defined(builtinOverflow):
  proc subInt(a, b: int): int {.compilerProc, inline.} =
    if subIntOverflow(a, b, result):
      raiseOverflow()

when not declared(mulInt) and defined(builtinOverflow):
  proc mulInt(a, b: int): int {.compilerProc, inline.} =
    if mulIntOverflow(a, b, result):
      raiseOverflow()

# Platform independent versions of the above (slower!)
when not declared(addInt):
  proc addInt(a, b: int): int {.compilerProc, inline.} =
    result = a +% b
    if (result xor a) >= 0 or (result xor b) >= 0:
      return result
    raiseOverflow()

when not declared(subInt):
  proc subInt(a, b: int): int {.compilerProc, inline.} =
    result = a -% b
    if (result xor a) >= 0 or (result xor not b) >= 0:
      return result
    raiseOverflow()

when not declared(negInt):
  proc negInt(a: int): int {.compilerProc, inline.} =
    if a != low(int): return -a
    raiseOverflow()

when not declared(divInt):
  proc divInt(a, b: int): int {.compilerProc, inline.} =
    if b == 0:
      raiseDivByZero()
    if a == low(int) and b == -1:
      raiseOverflow()
    return a div b

when not declared(modInt):
  proc modInt(a, b: int): int {.compilerProc, inline.} =
    if b == 0:
      raiseDivByZero()
    return a mod b

when not declared(mulInt):
  #
  # This code has been inspired by Python's source code.
  # The native int product x*y is either exactly right or *way* off, being
  # just the last n bits of the true product, where n is the number of bits
  # in an int (the delivered product is the true product plus i*2**n for
  # some integer i).
  #
  # The native float64 product x*y is subject to three
  # rounding errors: on a sizeof(int)==8 box, each cast to double can lose
  # info, and even on a sizeof(int)==4 box, the multiplication can lose info.
  # But, unlike the native int product, it's not in *range* trouble:  even
  # if sizeof(int)==32 (256-bit ints), the product easily fits in the
  # dynamic range of a float64. So the leading 50 (or so) bits of the float64
  # product are correct.
  #
  # We check these two ways against each other, and declare victory if
  # they're approximately the same. Else, because the native int product is
  # the only one that can lose catastrophic amounts of information, it's the
  # native int product that must have overflowed.
  #
  proc mulInt(a, b: int): int {.compilerProc.} =
    var
      resAsFloat, floatProd: float

    result = a *% b
    floatProd = toFloat(a) * toFloat(b)
    resAsFloat = toFloat(result)

    # Fast path for normal case: small multiplicands, and no info
    # is lost in either method.
    if resAsFloat == floatProd: return result

    # Somebody somewhere lost info. Close enough, or way off? Note
    # that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
    # The difference either is or isn't significant compared to the
    # true value (of which floatProd is a good approximation).

    # abs(diff)/abs(prod) <= 1/32 iff
    #   32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
    if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
      return result
    raiseOverflow()

# We avoid setting the FPU control word here for compatibility with libraries
# written in other languages.

proc raiseFloatInvalidOp {.noinline.} =
  sysFatal(FloatInvalidOpError, "FPU operation caused a NaN result")

proc nanCheck(x: float64) {.compilerProc, inline.} =
  if x != x: raiseFloatInvalidOp()

proc raiseFloatOverflow(x: float64) {.noinline.} =
  if x > 0.0:
    sysFatal(FloatOverflowError, "FPU operation caused an overflow")
  else:
    sysFatal(FloatUnderflowError, "FPU operations caused an underflow")

proc infCheck(x: float64) {.compilerProc, inline.} =
  if x != 0.0 and x*0.5 == x: raiseFloatOverflow(x)