This file is indexed.

/usr/share/minizinc/linear/redefinitions.mzn is in minizinc 2.0.11+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
%-----------------------------------------------------------------------------%
% FlatZinc built-in redefinitions for linear solvers.
%
% Sebastian Brand
% Gleb Belov     Corrected array_var_float_element and float_lin_lt_reif
%-----------------------------------------------------------------------------%

function var bool: reverse_map(var int: x) = (x==1);
function bool: reverse_map(int: x) = (x==1);

function var int: bool2int(var bool: x) :: promise_total =
 let { var 0..1: b2i;
       constraint (x = reverse_map(b2i)) ::is_reverse_map ;
      } in b2i;

predicate bool_eq(var bool: x, var bool: y) =
  bool2int(x)==bool2int(y);

%-----------------------------------------------------------------------------%
% Strict inequality
%
% Uncomment the following redefinition for FlatZinc MIP solver interfaces that
% do not support strict inequality.  Note that it does not preserve equivalence
% (some solutions of the original problem may become invalid).

% predicate float_lt(var float: x, var float: y) = x + 1e-06 <= y;

%-----------------------------------------------------------------------------%
%
% Logic operations
%
%-----------------------------------------------------------------------------%

predicate bool_not(var bool: p, var bool: q) =
    let { var 0..1: x = bool2int(p),
          var 0..1: y = bool2int(q) }
    in
    x + y = 1;


predicate bool_and(var bool: p, var bool: q, var bool: r) =
    let { var 0..1: x = bool2int(p),
          var 0..1: y = bool2int(q),
          var 0..1: z = bool2int(r) }
    in
    x + y <= z + 1 /\
    x + y >= z * 2;
    % x >= z /\ y >= z;     % alternative


predicate bool_or(var bool: p, var bool: q, var bool: r) =
    let { var 0..1: x = bool2int(p),
          var 0..1: y = bool2int(q),
          var 0..1: z = bool2int(r) }
    in
    x + y >= z /\
    x + y <= z * 2;
    % x <= z /\ y <= z;     % alternative


predicate bool_xor(var bool: p, var bool: q, var bool: r) =
    let { var 0..1: x = bool2int(p),
          var 0..1: y = bool2int(q),
          var 0..1: z = bool2int(r) }
    in
    x <= y + z /\
    y <= x + z /\
    z <= x + y /\
    x + y + z <= 2;


predicate bool_eq_reif(var bool: p, var bool: q, var bool: r) =
    if is_fixed(q) then   % frequent case
        if fix(q) = true then p = r else bool_not(p,r) endif
    else
    let { var 0..1: x = bool2int(p),
          var 0..1: y = bool2int(q),
          var 0..1: z = bool2int(r) }
    in
    x + y <= z + 1 /\
    x + z <= y + 1 /\
    y + z <= x + 1 /\
    x + y + z >= 1
    endif;


predicate bool_ne_reif(var bool: p, var bool: q, var bool: r) =
    bool_xor(p, q, r);


predicate bool_le(var bool: p, var bool: q) =
    let { var 0..1: x = bool2int(p),
          var 0..1: y = bool2int(q) }
    in
    x <= y;


predicate bool_le_reif(var bool: p, var bool: q, var bool: r) =
    let { var 0..1: x = bool2int(p),
          var 0..1: y = bool2int(q),
          var 0..1: z = bool2int(r) }
    in
    1 - x + y >= z /\
    1 - x + y <= z * 2;
    % 1 - x <= z /\ y <= z; % alternative


predicate bool_lt(var bool: p, var bool: q) =
    not p /\ q;


predicate bool_lt_reif(var bool: p, var bool: q, var bool: r) =
    (not p /\ q) <-> r;

%-----------------------------------------------------------------------------%

predicate array_bool_or(array[int] of var bool: a, var bool: b) =
    if is_fixed(b) then   % frequent case
        if fix(b) = true then
            sum(i in index_set(a))( bool2int(a[i]) ) >= 1
        else
            forall(i in index_set(a))( not a[i] )
        endif
    else
    let { var 0..1: x = bool2int(b),
          array[1..length(a)] of var 0..1: c =
              [ bool2int(a[i]) | i in index_set(a) ] }
    in
    sum(c) >= x /\
    sum(c) <= x * length(a)
    endif;

predicate array_bool_and(array[int] of var bool: a, var bool: b) =
    let { var 0..1: x = bool2int(b),
          array[1..length(a)] of var 0..1: c =
              [ bool2int(a[i]) | i in index_set(a) ] }
    in
    length(a) - sum(c) >=  1 - x /\
    length(a) - sum(c) <= (1 - x) * length(a);

predicate array_bool_xor(array[int] of var bool: a) =
     let { var 0..length(a): m }
     in
     sum(i in 1..length(a))( bool2int(a[i]) ) = 1 + 2 * m;

predicate bool_clause(array[int] of var bool: p, array[int] of var bool: n) =
      sum(i in index_set(p))( bool2int(p[i]) )
    - sum(i in index_set(n))( bool2int(n[i]) )
    + length(n)
    >= 1;

% predicate array_bool_xor(array[int] of var bool: a) = .. sum(a) is odd ..

%-----------------------------------------------------------------------------%
%
% Linear equations and inequations
%
%-----------------------------------------------------------------------------%

predicate int_le_reif(var int: x, var int: y, var bool: b) =
    let { var 0..1: p = bool2int(b) }
    in
    aux_int_le_if_1(x, y, p) /\
    aux_int_gt_if_0(x, y, p);


predicate int_lt_reif(var int: x, var int: y, var bool: b) =
    int_le_reif(x, y - 1, b);


predicate int_ne(var int: x, var int: y) =
    let { var 0..1: p }
    in
    aux_int_lt_if_1(x, y, p) /\
    aux_int_gt_if_0(x, y, p);

predicate int_lin_ne(array[int] of int: c, array[int] of var int: x, int: d) =
    int_ne(sum(i in index_set(x))( c[i]*x[i] ),d);

predicate int_eq_reif(var int: x, var int: y, var bool: b) =
    aux_int_eq_iff_1(x, y, bool2int(b));


predicate int_ne_reif(var int: x, var int: y, var bool: b) =
    aux_int_eq_iff_1(x, y, 1 - bool2int(b));

%-----------------------------------------------------------------------------%

predicate int_lin_eq_reif(array[int] of int: c, array[int] of var int: x,
                          int: d, var bool: b) =
    aux_int_eq_iff_1(sum(i in index_set(x))( c[i]*x[i] ), d, bool2int(b));


predicate int_lin_ne_reif(array[int] of int: c, array[int] of var int: x,
                          int: d, var bool: b) =
    aux_int_eq_iff_1(sum(i in index_set(x))( c[i]*x[i] ), d, 1 - bool2int(b));


predicate int_lin_le_reif(array[int] of int: c, array[int] of var int: x,
                          int: d, var bool: b) =
    let { var 0..1: p = bool2int(b) }
    in
    aux_int_le_if_1(sum(i in index_set(x))( c[i] * x[i] ), d, p) /\
    aux_int_gt_if_0(sum(i in index_set(x))( c[i] * x[i] ), d, p);


predicate int_lin_lt_reif(array[int] of int: c, array[int] of var int: x,
                          int: d, var bool: b) =
    int_lin_le_reif(c, x, d - 1, b);

%-----------------------------------------------------------------------------%

predicate float_le_reif(var float: x, var float: y, var bool: b) =
    let { var 0..1: p = bool2int(b) }
    in
    aux_float_le_if_1(x, y, int2float(p)) /\
    aux_float_gt_if_0(x, y, int2float(p));


predicate float_lt_reif(var float: x, var float: y, var bool: b) =
    let { var 0..1: p = bool2int(b) }
    in
    aux_float_lt_if_1(x, y, int2float(p)) /\
    aux_float_ge_if_0(x, y, int2float(p));


predicate float_ne(var float: x, var float: y) =
    let { var 0..1: p }
    in
    aux_float_lt_if_1(x, y, int2float(p)) /\
    aux_float_gt_if_0(x, y, int2float(p));


predicate float_eq_reif(var float: x, var float: y, var bool: b) =
    aux_float_eq_iff_1(x, y, int2float(bool2int(b)));


predicate float_ne_reif(var float: x, var float: y, var bool: b) =
    aux_float_eq_iff_1(x, y, 1.0 - int2float(bool2int(b)));

%-----------------------------------------------------------------------------%

predicate float_lin_eq_reif(array[int] of float: c, array[int] of var float: x,
                            float: d, var bool: b) =
    aux_float_eq_iff_1(sum(i in index_set(x))( c[i]*x[i] ), d,
        int2float(bool2int(b)));


predicate float_lin_ne_reif(array[int] of float: c, array[int] of var float: x,
                            float: d, var bool: b) =
    aux_float_eq_iff_1(sum(i in index_set(x))( c[i]*x[i] ), d,
        1.0 - int2float(bool2int(b)));


predicate float_lin_le_reif(array[int] of float: c, array[int] of var float: x,
                            float: d, var bool: b) =
    let { var 0.0..1.0: p = int2float(bool2int(b)) }
    in
    aux_float_le_if_1(sum(i in index_set(x))( c[i] * x[i] ), d, p) /\
    aux_float_gt_if_0(sum(i in index_set(x))( c[i] * x[i] ), d, p);


predicate float_lin_lt_reif(array[int] of float: c, array[int] of var float: x,
                            float: d, var bool: b) =
    let { var 0.0..1.0: p = int2float(bool2int(b)) }
    in
    aux_float_lt_if_1(sum(i in index_set(x))( c[i] * x[i] ), d, p) /\
    aux_float_ge_if_0(sum(i in index_set(x))( c[i] * x[i] ), d, p);

%-----------------------------------------------------------------------------%
% Minimum, maximum, absolute value

predicate int_abs(var int: x, var int: z) =
    let { var 0..1: p }
    in
    % z <= x \/ z <= -x
    aux_int_le_if_1(z,  x, p) /\
    aux_int_le_if_0(z, -x, p) /\
    z >=  x /\
    z >= -x /\
    z >= 0;


predicate int_min(var int: x, var int: y, var int: z) =
    let { var 0..1: p }
    in
    % z >= x \/ z >= y
    aux_int_ge_if_1(z, x, p) /\
    aux_int_ge_if_0(z, y, p) /\
    z <= x /\
    z <= y;


predicate int_max(var int: x, var int: y, var int: z) =
    let { var 0..1: p }
    in
    % z <= x \/ z <= y
    aux_int_le_if_1(z, x, p) /\
    aux_int_le_if_0(z, y, p) /\
    z >= x /\
    z >= y;


predicate float_abs(var float: x, var float: z) =
    let { var 0..1: p }
    in
    % z <= x \/ z <= -x
    aux_float_le_if_1(z,  x, int2float(p)) /\
    aux_float_le_if_0(z, -x, int2float(p)) /\
    z >=  x /\
    z >= -x /\
    z >= 0.0;


predicate float_min(var float: x, var float: y, var float: z) =
    let { var 0..1: p }
    in
    % z >= x \/ z >= y
    aux_float_ge_if_1(z, x, int2float(p)) /\
    aux_float_ge_if_0(z, y, int2float(p)) /\
    z <= x /\
    z <= y;


predicate float_max(var float: x, var float: y, var float: z) =
    let { var 0..1: p }
    in
    % z <= x \/ z <= y
    aux_float_le_if_1(z, x, int2float(p)) /\
    aux_float_le_if_0(z, y, int2float(p)) /\
    z >= x /\
    z >= y;

%-----------------------------------------------------------------------------%
% Multiplication and division

predicate int_div(var int: x, var int: y, var int: q) =
    let { var 0..max(abs(lb(y)), abs(ub(y))) - 1: r }
    in
    aux_int_division_modulo(x,y,q,r);


predicate int_mod(var int: x, var int: y, var int: r) =
    let { 
      int: bx = max(abs(lb(x)), abs(ub(x)));
      var -bx..bx: q;
      int: by = max(abs(lb(y)), abs(ub(y)));
      constraint r in -by..by;
    }
    in
    aux_int_division_modulo(x,y,q,r);


predicate aux_int_division_modulo(var int: x, var int: y, var int: q,
        var int: r) =
    x = y * q + r /\
    let { array[1..2] of var 0..1: p }
    in
    % 0 < x -> 0 <= r    which is    0 >= x \/ 0 <= r
    aux_int_le_if_1(x, 0, p[1]) /\
    aux_int_ge_if_0(r, 0, p[1]) /\
    % x < 0 -> r <= 0    which is    x >= 0 \/ r <= 0
    aux_int_ge_if_1(x, 0, p[2]) /\
    aux_int_le_if_0(r, 0, p[2]) /\
    % abs(r) < abs(y)
    let { var 1.. max(abs(lb(y)), abs(ub(y))): w = abs(y) }
    in
    w >  r /\
    w > -r;


predicate int_times(var int: x, var int: y, var int: z) =
    if card(dom(x)) > card(dom(y)) then int_times(y,x,z)
    else
    let { set of int: s = lb(x)..ub(x),
          set of int: r = {lb(x)*lb(y), lb(x)*ub(y), ub(x)*lb(y), ub(x)*ub(y)},
          array[s] of var min(r)..max(r): ady = array1d(s, [ d*y | d in s ]) }
    in
    ady[x] = z
    endif;

%-----------------------------------------------------------------------------%
% Array 'element' constraints

predicate array_bool_element(var int: x, array[int] of bool: a, var bool: z) =
    x in index_set(a) /\
    forall(d in index_set(a))( x = d -> a[d] = z );


predicate array_var_bool_element(var int: x, array[int] of var bool: a,
                                 var bool: z) =
    x in index_set(a) /\
    forall(d in index_set(a))( x = d -> a[d] = z );


predicate array_int_element(var int: x, array[int] of int: a, var int: z) =
    x in index_set(a) /\
    forall(d in index_set(a))( x = d -> a[d] = z );

predicate array_var_int_element(var int: x, array[int] of var int: a,
                                var int: z) =
    x in index_set(a) /\
    forall(d in index_set(a))( x = d -> a[d] = z );


predicate array_float_element(var int: x, array[int] of float: a,
                              var float: z) =
    let { set of int: ix = index_set(a),
          array[ix] of var 0..1: x_eq_d }
    in
    sum(i in ix)(     x_eq_d[i] ) = 1
    /\
    sum(i in ix)( i * x_eq_d[i] ) = x
    /\
    sum(i in ix)( a[i] * int2float(x_eq_d[i]) ) = z;


predicate array_var_float_element(var int: x, array[int] of var float: a,
                                  var float: z) =
    let { set of int: ix = index_set(a),
          array[ix] of var 0..1: x_eq_d }
    in
    sum(i in ix)(     x_eq_d[i] ) = 1
    /\
    sum(i in ix)( i * x_eq_d[i] ) = x
    /\
    forall(i in ix)(
        % x_eq_d[i] -> a[i] = a2[i]
        a[i] - z >= (lb(a[i])-ub(z))*int2float(1-x_eq_d[i])
        /\
        z - a[i] >= (lb(z)-ub(a[i]))*int2float(1-x_eq_d[i])
    );

%-----------------------------------------------------------------------------%
% Domain constraints

% XXX  only for a fixed set

predicate set_in(var int: x, set of int: s) =
    if s = min(s)..max(s) then
        min(s) <= x /\ x <= max(s)
    else
        exists(e in s)( x = e )
    endif;

% XXX  only for a fixed set
predicate set_in_reif(var int: x, set of int: s, var bool: b) =
    b <->
        exists(i in 1..length([ 0 | e in s where not (e - 1 in s) ]))(
            let { int: l = [ e | e in s where not (e - 1 in s) ][i],
                  int: r = [ e | e in s where not (e + 1 in s) ][i] }
            in
            l <= x /\ x <= r
        );

    % Alternative
predicate alt_set_in_reif(var int: x, set of int: s, var bool: b) =
    b <->
        if s = min(s)..max(s) then
            min(s) <= x /\ x <= max(s)
        else
            exists(e in s)( x = e )
        endif;

%-----------------------------------------------------------------------------%
% Auxiliary: equality reified onto a 0/1 variable

predicate aux_int_eq_iff_1(var int: x, var int: y, var int: p) =
    let { array[1..2] of var 0..1: q_458 }
    in
    aux_int_lt_if_0(x - p, y, q_458[1]) /\
    aux_int_gt_if_0(x + p, y, q_458[2]) /\
    sum(q_458) <= 2 - 2*p /\
    sum(q_458) <= 1 + p;

    % Alternative 1
predicate alt_1_aux_int_eq_iff_1(var int: x, var int: y, var int: p) =
    let { array[1..2] of var 0..1: q }
    in
    aux_int_lt_if_0(x - p, y, q[1]) /\
    aux_int_gt_if_0(x + p, y, q[2]) /\
    q[1] <= 1 - p /\
    q[2] <= 1 - p /\
    sum(q) <= 1 + p;

    % Alternative 2
predicate alt_2_aux_int_eq_iff_1(var int: x, var int: y, var int: p) =
    let { array[1..2] of var 0..1: q }
    in
    aux_int_le_if_1(x, y, p) /\
    aux_int_ge_if_1(x, y, p) /\
    aux_int_lt_if_0(x, y, q[1]) /\
    aux_int_gt_if_0(x, y, q[2]) /\
    sum(q) <= p + 1;


predicate aux_float_eq_iff_1(var float: x, var float: y, var float: p) =
    let { array[1..2] of var 0..1: q }
    in
    aux_float_le_if_1(x, y, p) /\
    aux_float_ge_if_1(x, y, p) /\
    aux_float_lt_if_0(x, y, int2float(q[1])) /\
    aux_float_gt_if_0(x, y, int2float(q[2])) /\
    int2float(sum(q)) <= 1.0 + p;

%-----------------------------------------------------------------------------%
% Auxiliary: indicator constraints
%   p -> x # 0  where p is a 0/1 variable and # is a comparison

% Base cases

predicate aux_int_le_zero_if_0(var int: x, var int: p) =
    x <= ub(x) * p;

predicate aux_float_le_zero_if_0(var float: x, var float: p) =
    x <= ub(x) * p;

predicate aux_float_lt_zero_if_0(var float: x, var float: p) =
    let { float: rho = 1e-02 * abs(ub(x)) }  % same order of magnitude as ub(x)
    in
    x < (ub(x) + rho) * p;


% Derived cases

predicate aux_int_le_if_0(var int: x, var int: y, var int: p) =
    aux_int_le_zero_if_0(x - y, p);

predicate aux_int_ge_if_0(var int: x, var int: y, var int: p) =
    aux_int_le_zero_if_0(y - x, p);

predicate aux_int_le_if_1(var int: x, var int: y, var int: p) =
    aux_int_le_zero_if_0(x - y, 1 - p);

predicate aux_int_ge_if_1(var int: x, var int: y, var int: p) =
    aux_int_le_zero_if_0(y - x, 1 - p);

predicate aux_int_lt_if_0(var int: x, var int: y, var int: p) =
    aux_int_le_zero_if_0(x - y + 1, p);

predicate aux_int_gt_if_0(var int: x, var int: y, var int: p) =
    aux_int_le_zero_if_0(y - x + 1, p);

predicate aux_int_lt_if_1(var int: x, var int: y, var int: p) =
    aux_int_le_zero_if_0(x - y + 1, 1 - p);


predicate aux_float_le_if_0(var float: x, var float: y, var float: p) =
    aux_float_le_zero_if_0(x - y, p);

predicate aux_float_ge_if_0(var float: x, var float: y, var float: p) =
    aux_float_le_zero_if_0(y - x, p);

predicate aux_float_le_if_1(var float: x, var float: y, var float: p) =
    aux_float_le_zero_if_0(x - y, 1.0 - p);

predicate aux_float_ge_if_1(var float: x, var float: y, var float: p) =
    aux_float_le_zero_if_0(y - x, 1.0 - p);

predicate aux_float_lt_if_0(var float: x, var float: y, var float: p) =
    aux_float_lt_zero_if_0(x - y, p);

predicate aux_float_gt_if_0(var float: x, var float: y, var float: p) =
    aux_float_lt_zero_if_0(y - x, p);

predicate aux_float_lt_if_1(var float: x, var float: y, var float: p) =
    aux_float_lt_zero_if_0(x - y, 1.0 - p);

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

annotation bool_search(array[int] of var bool: x, ann:a1, ann:a2, ann:a3) =
  int_search([bool2int(x[i]) | i in index_set(x)],a1,a2,a3);

predicate array_int_maximum(var int: m, array[int] of var int: x) =
    let { int: l = min(index_set(x)),
          int: u = max(index_set(x)),
          int: ly = lb_array(x),
          int: uy = ub_array(x),
          array[l..u] of var ly..uy: y } in
    y[l] = x[l] /\
    m = y[u] /\
    forall (i in l+1 .. u) ( y[i] == max(x[i],y[i-1]) );

predicate array_float_maximum(var float: m, array[int] of var float: x) =
    let { int: l = min(index_set(x)),
          int: u = max(index_set(x)),
          float: ly = lb_array(x),
          float: uy = ub_array(x),
          array[l..u] of var ly..uy: y } in
    y[l] = x[l] /\
    m = y[u] /\
    forall (i in l+1 .. u) ( y[i] == max(x[i],y[i-1]) );

predicate array_int_minimum(var int: m, array[int] of var int: x) =
    let { int: l = min(index_set(x)),
          int: u = max(index_set(x)),
          int: ly = lb_array(x),
          int: uy = ub_array(x),
          array[l..u] of var ly..uy: y } in
    y[l] = x[l] /\
    m = y[u] /\
    forall (i in l+1 .. u) ( y[i] == min(x[i],y[i-1]) );

predicate array_float_minimum(var float: m, array[int] of var float: x) =
    let { int: l = min(index_set(x)),
          int: u = max(index_set(x)),
          float: ly = lb_array(x),
          float: uy = ub_array(x),
          array[l..u] of var ly..uy: y } in
    y[l] = x[l] /\
    m = y[u] /\
    forall (i in l+1 .. u) ( y[i] == min(x[i],y[i-1]) );

mzn_opt_only_range_domains = true;