This file is indexed.

/usr/include/llvm-3.5/llvm/Target/Target.td is in llvm-3.5-dev 1:3.5.2-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces which should be
// implemented by each target which is using a TableGen based code generator.
//
//===----------------------------------------------------------------------===//

// Include all information about LLVM intrinsics.
include "llvm/IR/Intrinsics.td"

//===----------------------------------------------------------------------===//
// Register file description - These classes are used to fill in the target
// description classes.

class RegisterClass; // Forward def

// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
class SubRegIndex<int size, int offset = 0> {
  string Namespace = "";

  // Size - Size (in bits) of the sub-registers represented by this index.
  int Size = size;

  // Offset - Offset of the first bit that is part of this sub-register index.
  // Set it to -1 if the same index is used to represent sub-registers that can
  // be at different offsets (for example when using an index to access an
  // element in a register tuple).
  int Offset = offset;

  // ComposedOf - A list of two SubRegIndex instances, [A, B].
  // This indicates that this SubRegIndex is the result of composing A and B.
  // See ComposedSubRegIndex.
  list<SubRegIndex> ComposedOf = [];

  // CoveringSubRegIndices - A list of two or more sub-register indexes that
  // cover this sub-register.
  //
  // This field should normally be left blank as TableGen can infer it.
  //
  // TableGen automatically detects sub-registers that straddle the registers
  // in the SubRegs field of a Register definition. For example:
  //
  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
  //
  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
  // CoveringSubRegIndices = [dsub_1, dsub_2].
  list<SubRegIndex> CoveringSubRegIndices = [];
}

// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
  : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
                        !if(!eq(B.Offset, -1), -1,
                            !add(A.Offset, B.Offset)))> {
  // See SubRegIndex.
  let ComposedOf = [A, B];
}

// RegAltNameIndex - The alternate name set to use for register operands of
// this register class when printing.
class RegAltNameIndex {
  string Namespace = "";
}
def NoRegAltName : RegAltNameIndex;

// Register - You should define one instance of this class for each register
// in the target machine.  String n will become the "name" of the register.
class Register<string n, list<string> altNames = []> {
  string Namespace = "";
  string AsmName = n;
  list<string> AltNames = altNames;

  // Aliases - A list of registers that this register overlaps with.  A read or
  // modification of this register can potentially read or modify the aliased
  // registers.
  list<Register> Aliases = [];

  // SubRegs - A list of registers that are parts of this register. Note these
  // are "immediate" sub-registers and the registers within the list do not
  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
  // not [AX, AH, AL].
  list<Register> SubRegs = [];

  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
  // to address it. Sub-sub-register indices are automatically inherited from
  // SubRegs.
  list<SubRegIndex> SubRegIndices = [];

  // RegAltNameIndices - The alternate name indices which are valid for this
  // register.
  list<RegAltNameIndex> RegAltNameIndices = [];

  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
  // These values can be determined by locating the <target>.h file in the
  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
  // order of these names correspond to the enumeration used by gcc.  A value of
  // -1 indicates that the gcc number is undefined and -2 that register number
  // is invalid for this mode/flavour.
  list<int> DwarfNumbers = [];

  // CostPerUse - Additional cost of instructions using this register compared
  // to other registers in its class. The register allocator will try to
  // minimize the number of instructions using a register with a CostPerUse.
  // This is used by the x86-64 and ARM Thumb targets where some registers
  // require larger instruction encodings.
  int CostPerUse = 0;

  // CoveredBySubRegs - When this bit is set, the value of this register is
  // completely determined by the value of its sub-registers.  For example, the
  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
  // covered by its sub-register AX.
  bit CoveredBySubRegs = 0;

  // HWEncoding - The target specific hardware encoding for this register.
  bits<16> HWEncoding = 0;
}

// RegisterWithSubRegs - This can be used to define instances of Register which
// need to specify sub-registers.
// List "subregs" specifies which registers are sub-registers to this one. This
// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
// This allows the code generator to be careful not to put two values with
// overlapping live ranges into registers which alias.
class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
  let SubRegs = subregs;
}

// DAGOperand - An empty base class that unifies RegisterClass's and other forms
// of Operand's that are legal as type qualifiers in DAG patterns.  This should
// only ever be used for defining multiclasses that are polymorphic over both
// RegisterClass's and other Operand's.
class DAGOperand { }

// RegisterClass - Now that all of the registers are defined, and aliases
// between registers are defined, specify which registers belong to which
// register classes.  This also defines the default allocation order of
// registers by register allocators.
//
class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
                    dag regList, RegAltNameIndex idx = NoRegAltName>
  : DAGOperand {
  string Namespace = namespace;

  // RegType - Specify the list ValueType of the registers in this register
  // class.  Note that all registers in a register class must have the same
  // ValueTypes.  This is a list because some targets permit storing different
  // types in same register, for example vector values with 128-bit total size,
  // but different count/size of items, like SSE on x86.
  //
  list<ValueType> RegTypes = regTypes;

  // Size - Specify the spill size in bits of the registers.  A default value of
  // zero lets tablgen pick an appropriate size.
  int Size = 0;

  // Alignment - Specify the alignment required of the registers when they are
  // stored or loaded to memory.
  //
  int Alignment = alignment;

  // CopyCost - This value is used to specify the cost of copying a value
  // between two registers in this register class. The default value is one
  // meaning it takes a single instruction to perform the copying. A negative
  // value means copying is extremely expensive or impossible.
  int CopyCost = 1;

  // MemberList - Specify which registers are in this class.  If the
  // allocation_order_* method are not specified, this also defines the order of
  // allocation used by the register allocator.
  //
  dag MemberList = regList;

  // AltNameIndex - The alternate register name to use when printing operands
  // of this register class. Every register in the register class must have
  // a valid alternate name for the given index.
  RegAltNameIndex altNameIndex = idx;

  // isAllocatable - Specify that the register class can be used for virtual
  // registers and register allocation.  Some register classes are only used to
  // model instruction operand constraints, and should have isAllocatable = 0.
  bit isAllocatable = 1;

  // AltOrders - List of alternative allocation orders. The default order is
  // MemberList itself, and that is good enough for most targets since the
  // register allocators automatically remove reserved registers and move
  // callee-saved registers to the end.
  list<dag> AltOrders = [];

  // AltOrderSelect - The body of a function that selects the allocation order
  // to use in a given machine function. The code will be inserted in a
  // function like this:
  //
  //   static inline unsigned f(const MachineFunction &MF) { ... }
  //
  // The function should return 0 to select the default order defined by
  // MemberList, 1 to select the first AltOrders entry and so on.
  code AltOrderSelect = [{}];
}

// The memberList in a RegisterClass is a dag of set operations. TableGen
// evaluates these set operations and expand them into register lists. These
// are the most common operation, see test/TableGen/SetTheory.td for more
// examples of what is possible:
//
// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
// register class, or a sub-expression. This is also the way to simply list
// registers.
//
// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
//
// (and GPR, CSR) - Set intersection. All registers from the first set that are
// also in the second set.
//
// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
// numbered registers.  Takes an optional 4th operand which is a stride to use
// when generating the sequence.
//
// (shl GPR, 4) - Remove the first N elements.
//
// (trunc GPR, 4) - Truncate after the first N elements.
//
// (rotl GPR, 1) - Rotate N places to the left.
//
// (rotr GPR, 1) - Rotate N places to the right.
//
// (decimate GPR, 2) - Pick every N'th element, starting with the first.
//
// (interleave A, B, ...) - Interleave the elements from each argument list.
//
// All of these operators work on ordered sets, not lists. That means
// duplicates are removed from sub-expressions.

// Set operators. The rest is defined in TargetSelectionDAG.td.
def sequence;
def decimate;
def interleave;

// RegisterTuples - Automatically generate super-registers by forming tuples of
// sub-registers. This is useful for modeling register sequence constraints
// with pseudo-registers that are larger than the architectural registers.
//
// The sub-register lists are zipped together:
//
//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
//
// Generates the same registers as:
//
//   let SubRegIndices = [sube, subo] in {
//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
//   }
//
// The generated pseudo-registers inherit super-classes and fields from their
// first sub-register. Most fields from the Register class are inferred, and
// the AsmName and Dwarf numbers are cleared.
//
// RegisterTuples instances can be used in other set operations to form
// register classes and so on. This is the only way of using the generated
// registers.
class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
  // SubRegs - N lists of registers to be zipped up. Super-registers are
  // synthesized from the first element of each SubRegs list, the second
  // element and so on.
  list<dag> SubRegs = Regs;

  // SubRegIndices - N SubRegIndex instances. This provides the names of the
  // sub-registers in the synthesized super-registers.
  list<SubRegIndex> SubRegIndices = Indices;
}


//===----------------------------------------------------------------------===//
// DwarfRegNum - This class provides a mapping of the llvm register enumeration
// to the register numbering used by gcc and gdb.  These values are used by a
// debug information writer to describe where values may be located during
// execution.
class DwarfRegNum<list<int> Numbers> {
  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
  // These values can be determined by locating the <target>.h file in the
  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
  // order of these names correspond to the enumeration used by gcc.  A value of
  // -1 indicates that the gcc number is undefined and -2 that register number
  // is invalid for this mode/flavour.
  list<int> DwarfNumbers = Numbers;
}

// DwarfRegAlias - This class declares that a given register uses the same dwarf
// numbers as another one. This is useful for making it clear that the two
// registers do have the same number. It also lets us build a mapping
// from dwarf register number to llvm register.
class DwarfRegAlias<Register reg> {
      Register DwarfAlias = reg;
}

//===----------------------------------------------------------------------===//
// Pull in the common support for scheduling
//
include "llvm/Target/TargetSchedule.td"

class Predicate; // Forward def

//===----------------------------------------------------------------------===//
// Instruction set description - These classes correspond to the C++ classes in
// the Target/TargetInstrInfo.h file.
//
class Instruction {
  string Namespace = "";

  dag OutOperandList;       // An dag containing the MI def operand list.
  dag InOperandList;        // An dag containing the MI use operand list.
  string AsmString = "";    // The .s format to print the instruction with.

  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
  // otherwise, uninitialized.
  list<dag> Pattern;

  // The follow state will eventually be inferred automatically from the
  // instruction pattern.

  list<Register> Uses = []; // Default to using no non-operand registers
  list<Register> Defs = []; // Default to modifying no non-operand registers

  // Predicates - List of predicates which will be turned into isel matching
  // code.
  list<Predicate> Predicates = [];

  // Size - Size of encoded instruction, or zero if the size cannot be determined
  // from the opcode.
  int Size = 0;

  // DecoderNamespace - The "namespace" in which this instruction exists, on
  // targets like ARM which multiple ISA namespaces exist.
  string DecoderNamespace = "";

  // Code size, for instruction selection.
  // FIXME: What does this actually mean?
  int CodeSize = 0;

  // Added complexity passed onto matching pattern.
  int AddedComplexity  = 0;

  // These bits capture information about the high-level semantics of the
  // instruction.
  bit isReturn     = 0;     // Is this instruction a return instruction?
  bit isBranch     = 0;     // Is this instruction a branch instruction?
  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
  bit isCompare    = 0;     // Is this instruction a comparison instruction?
  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
  bit isSelect     = 0;     // Is this instruction a select instruction?
  bit isBarrier    = 0;     // Can control flow fall through this instruction?
  bit isCall       = 0;     // Is this instruction a call instruction?
  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
  bit mayLoad      = ?;     // Is it possible for this inst to read memory?
  bit mayStore     = ?;     // Is it possible for this inst to write memory?
  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
  bit isReMaterializable = 0; // Is this instruction re-materializable?
  bit isPredicable = 0;     // Is this instruction predicable?
  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
  bit usesCustomInserter = 0; // Pseudo instr needing special help.
  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
                            // If so, won't have encoding information for
                            // the [MC]CodeEmitter stuff.

  // Side effect flags - When set, the flags have these meanings:
  //
  //  hasSideEffects - The instruction has side effects that are not
  //    captured by any operands of the instruction or other flags.
  //
  //  neverHasSideEffects (deprecated) - Set on an instruction with no pattern
  //    if it has no side effects. This is now equivalent to setting
  //    "hasSideEffects = 0".
  bit hasSideEffects = ?;
  bit neverHasSideEffects = 0;

  // Is this instruction a "real" instruction (with a distinct machine
  // encoding), or is it a pseudo instruction used for codegen modeling
  // purposes.
  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
  // instructions can (and often do) still have encoding information
  // associated with them. Once we've migrated all of them over to true
  // pseudo-instructions that are lowered to real instructions prior to
  // the printer/emitter, we can remove this attribute and just use isPseudo.
  //
  // The intended use is:
  // isPseudo: Does not have encoding information and should be expanded,
  //   at the latest, during lowering to MCInst.
  //
  // isCodeGenOnly: Does have encoding information and can go through to the
  //   CodeEmitter unchanged, but duplicates a canonical instruction
  //   definition's encoding and should be ignored when constructing the
  //   assembler match tables.
  bit isCodeGenOnly = 0;

  // Is this instruction a pseudo instruction for use by the assembler parser.
  bit isAsmParserOnly = 0;

  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.

  // Scheduling information from TargetSchedule.td.
  list<SchedReadWrite> SchedRW;

  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.

  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
  /// be encoded into the output machineinstr.
  string DisableEncoding = "";

  string PostEncoderMethod = "";
  string DecoderMethod = "";

  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
  bits<64> TSFlags = 0;

  ///@name Assembler Parser Support
  ///@{

  string AsmMatchConverter = "";

  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
  /// two-operand matcher inst-alias for a three operand instruction.
  /// For example, the arm instruction "add r3, r3, r5" can be written
  /// as "add r3, r5". The constraint is of the same form as a tied-operand
  /// constraint. For example, "$Rn = $Rd".
  string TwoOperandAliasConstraint = "";

  ///@}

  /// UseNamedOperandTable - If set, the operand indices of this instruction
  /// can be queried via the getNamedOperandIdx() function which is generated
  /// by TableGen.
  bit UseNamedOperandTable = 0;
}

/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
/// Which instruction it expands to and how the operands map from the
/// pseudo.
class PseudoInstExpansion<dag Result> {
  dag ResultInst = Result;     // The instruction to generate.
  bit isPseudo = 1;
}

/// Predicates - These are extra conditionals which are turned into instruction
/// selector matching code. Currently each predicate is just a string.
class Predicate<string cond> {
  string CondString = cond;

  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
  /// matcher, this is true.  Targets should set this by inheriting their
  /// feature from the AssemblerPredicate class in addition to Predicate.
  bit AssemblerMatcherPredicate = 0;

  /// AssemblerCondString - Name of the subtarget feature being tested used
  /// as alternative condition string used for assembler matcher.
  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
  /// It can also list multiple features separated by ",".
  /// e.g. "ModeThumb,FeatureThumb2" is translated to
  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
  string AssemblerCondString = "";

  /// PredicateName - User-level name to use for the predicate. Mainly for use
  /// in diagnostics such as missing feature errors in the asm matcher.
  string PredicateName = "";
}

/// NoHonorSignDependentRounding - This predicate is true if support for
/// sign-dependent-rounding is not enabled.
def NoHonorSignDependentRounding
 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;

class Requires<list<Predicate> preds> {
  list<Predicate> Predicates = preds;
}

/// ops definition - This is just a simple marker used to identify the operand
/// list for an instruction. outs and ins are identical both syntactically and
/// semanticallyr; they are used to define def operands and use operands to
/// improve readibility. This should be used like this:
///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
def ops;
def outs;
def ins;

/// variable_ops definition - Mark this instruction as taking a variable number
/// of operands.
def variable_ops;


/// PointerLikeRegClass - Values that are designed to have pointer width are
/// derived from this.  TableGen treats the register class as having a symbolic
/// type that it doesn't know, and resolves the actual regclass to use by using
/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
class PointerLikeRegClass<int Kind> {
  int RegClassKind = Kind;
}


/// ptr_rc definition - Mark this operand as being a pointer value whose
/// register class is resolved dynamically via a callback to TargetInstrInfo.
/// FIXME: We should probably change this to a class which contain a list of
/// flags. But currently we have but one flag.
def ptr_rc : PointerLikeRegClass<0>;

/// unknown definition - Mark this operand as being of unknown type, causing
/// it to be resolved by inference in the context it is used.
class unknown_class;
def unknown : unknown_class;

/// AsmOperandClass - Representation for the kinds of operands which the target
/// specific parser can create and the assembly matcher may need to distinguish.
///
/// Operand classes are used to define the order in which instructions are
/// matched, to ensure that the instruction which gets matched for any
/// particular list of operands is deterministic.
///
/// The target specific parser must be able to classify a parsed operand into a
/// unique class which does not partially overlap with any other classes. It can
/// match a subset of some other class, in which case the super class field
/// should be defined.
class AsmOperandClass {
  /// The name to use for this class, which should be usable as an enum value.
  string Name = ?;

  /// The super classes of this operand.
  list<AsmOperandClass> SuperClasses = [];

  /// The name of the method on the target specific operand to call to test
  /// whether the operand is an instance of this class. If not set, this will
  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
  /// signature should be:
  ///   bool isFoo() const;
  string PredicateMethod = ?;

  /// The name of the method on the target specific operand to call to add the
  /// target specific operand to an MCInst. If not set, this will default to
  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
  /// signature should be:
  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
  string RenderMethod = ?;

  /// The name of the method on the target specific operand to call to custom
  /// handle the operand parsing. This is useful when the operands do not relate
  /// to immediates or registers and are very instruction specific (as flags to
  /// set in a processor register, coprocessor number, ...).
  string ParserMethod = ?;

  // The diagnostic type to present when referencing this operand in a
  // match failure error message. By default, use a generic "invalid operand"
  // diagnostic. The target AsmParser maps these codes to text.
  string DiagnosticType = "";
}

def ImmAsmOperand : AsmOperandClass {
  let Name = "Imm";
}

/// Operand Types - These provide the built-in operand types that may be used
/// by a target.  Targets can optionally provide their own operand types as
/// needed, though this should not be needed for RISC targets.
class Operand<ValueType ty> : DAGOperand {
  ValueType Type = ty;
  string PrintMethod = "printOperand";
  string EncoderMethod = "";
  string DecoderMethod = "";
  string AsmOperandLowerMethod = ?;
  string OperandType = "OPERAND_UNKNOWN";
  dag MIOperandInfo = (ops);

  // MCOperandPredicate - Optionally, a code fragment operating on
  // const MCOperand &MCOp, and returning a bool, to indicate if
  // the value of MCOp is valid for the specific subclass of Operand
  code MCOperandPredicate;

  // ParserMatchClass - The "match class" that operands of this type fit
  // in. Match classes are used to define the order in which instructions are
  // match, to ensure that which instructions gets matched is deterministic.
  //
  // The target specific parser must be able to classify an parsed operand into
  // a unique class, which does not partially overlap with any other classes. It
  // can match a subset of some other class, in which case the AsmOperandClass
  // should declare the other operand as one of its super classes.
  AsmOperandClass ParserMatchClass = ImmAsmOperand;
}

class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
  : DAGOperand {
  // RegClass - The register class of the operand.
  RegisterClass RegClass = regclass;
  // PrintMethod - The target method to call to print register operands of
  // this type. The method normally will just use an alt-name index to look
  // up the name to print. Default to the generic printOperand().
  string PrintMethod = pm;
  // ParserMatchClass - The "match class" that operands of this type fit
  // in. Match classes are used to define the order in which instructions are
  // match, to ensure that which instructions gets matched is deterministic.
  //
  // The target specific parser must be able to classify an parsed operand into
  // a unique class, which does not partially overlap with any other classes. It
  // can match a subset of some other class, in which case the AsmOperandClass
  // should declare the other operand as one of its super classes.
  AsmOperandClass ParserMatchClass;
}

let OperandType = "OPERAND_IMMEDIATE" in {
def i1imm  : Operand<i1>;
def i8imm  : Operand<i8>;
def i16imm : Operand<i16>;
def i32imm : Operand<i32>;
def i64imm : Operand<i64>;

def f32imm : Operand<f32>;
def f64imm : Operand<f64>;
}

/// zero_reg definition - Special node to stand for the zero register.
///
def zero_reg;

/// All operands which the MC layer classifies as predicates should inherit from
/// this class in some manner. This is already handled for the most commonly
/// used PredicateOperand, but may be useful in other circumstances.
class PredicateOp;

/// OperandWithDefaultOps - This Operand class can be used as the parent class
/// for an Operand that needs to be initialized with a default value if
/// no value is supplied in a pattern.  This class can be used to simplify the
/// pattern definitions for instructions that have target specific flags
/// encoded as immediate operands.
class OperandWithDefaultOps<ValueType ty, dag defaultops>
  : Operand<ty> {
  dag DefaultOps = defaultops;
}

/// PredicateOperand - This can be used to define a predicate operand for an
/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
/// AlwaysVal specifies the value of this predicate when set to "always
/// execute".
class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
  let MIOperandInfo = OpTypes;
}

/// OptionalDefOperand - This is used to define a optional definition operand
/// for an instruction. DefaultOps is the register the operand represents if
/// none is supplied, e.g. zero_reg.
class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
  : OperandWithDefaultOps<ty, defaultops> {
  let MIOperandInfo = OpTypes;
}


// InstrInfo - This class should only be instantiated once to provide parameters
// which are global to the target machine.
//
class InstrInfo {
  // Target can specify its instructions in either big or little-endian formats.
  // For instance, while both Sparc and PowerPC are big-endian platforms, the
  // Sparc manual specifies its instructions in the format [31..0] (big), while
  // PowerPC specifies them using the format [0..31] (little).
  bit isLittleEndianEncoding = 0;

  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
  // by default, and TableGen will infer their value from the instruction
  // pattern when possible.
  //
  // Normally, TableGen will issue an error it it can't infer the value of a
  // property that hasn't been set explicitly. When guessInstructionProperties
  // is set, it will guess a safe value instead.
  //
  // This option is a temporary migration help. It will go away.
  bit guessInstructionProperties = 1;

  // TableGen's instruction encoder generator has support for matching operands
  // to bit-field variables both by name and by position. While matching by
  // name is preferred, this is currently not possible for complex operands,
  // and some targets still reply on the positional encoding rules. When
  // generating a decoder for such targets, the positional encoding rules must
  // be used by the decoder generator as well.
  //
  // This option is temporary; it will go away once the TableGen decoder
  // generator has better support for complex operands and targets have
  // migrated away from using positionally encoded operands.
  bit decodePositionallyEncodedOperands = 0;

  // When set, this indicates that there will be no overlap between those
  // operands that are matched by ordering (positional operands) and those
  // matched by name.
  //
  // This option is temporary; it will go away once the TableGen decoder
  // generator has better support for complex operands and targets have
  // migrated away from using positionally encoded operands.
  bit noNamedPositionallyEncodedOperands = 0;
}

// Standard Pseudo Instructions.
// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
// Only these instructions are allowed in the TargetOpcode namespace.
let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
def PHI : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "PHINODE";
}
def INLINEASM : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "";
  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
}
def CFI_INSTRUCTION : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "";
  let hasCtrlDep = 1;
  let isNotDuplicable = 1;
}
def EH_LABEL : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "";
  let hasCtrlDep = 1;
  let isNotDuplicable = 1;
}
def GC_LABEL : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "";
  let hasCtrlDep = 1;
  let isNotDuplicable = 1;
}
def KILL : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "";
  let neverHasSideEffects = 1;
}
def EXTRACT_SUBREG : Instruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
  let AsmString = "";
  let neverHasSideEffects = 1;
}
def INSERT_SUBREG : Instruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
  let AsmString = "";
  let neverHasSideEffects = 1;
  let Constraints = "$supersrc = $dst";
}
def IMPLICIT_DEF : Instruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins);
  let AsmString = "";
  let neverHasSideEffects = 1;
  let isReMaterializable = 1;
  let isAsCheapAsAMove = 1;
}
def SUBREG_TO_REG : Instruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
  let AsmString = "";
  let neverHasSideEffects = 1;
}
def COPY_TO_REGCLASS : Instruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$src, i32imm:$regclass);
  let AsmString = "";
  let neverHasSideEffects = 1;
  let isAsCheapAsAMove = 1;
}
def DBG_VALUE : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "DBG_VALUE";
  let neverHasSideEffects = 1;
}
def REG_SEQUENCE : Instruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins variable_ops);
  let AsmString = "";
  let neverHasSideEffects = 1;
  let isAsCheapAsAMove = 1;
}
def COPY : Instruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins unknown:$src);
  let AsmString = "";
  let neverHasSideEffects = 1;
  let isAsCheapAsAMove = 1;
}
def BUNDLE : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins variable_ops);
  let AsmString = "BUNDLE";
}
def LIFETIME_START : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "LIFETIME_START";
  let neverHasSideEffects = 1;
}
def LIFETIME_END : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i32imm:$id);
  let AsmString = "LIFETIME_END";
  let neverHasSideEffects = 1;
}
def STACKMAP : Instruction {
  let OutOperandList = (outs);
  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
  let isCall = 1;
  let mayLoad = 1;
  let usesCustomInserter = 1;
}
def PATCHPOINT : Instruction {
  let OutOperandList = (outs unknown:$dst);
  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
                       i32imm:$nargs, i32imm:$cc, variable_ops);
  let isCall = 1;
  let mayLoad = 1;
  let usesCustomInserter = 1;
}
}

//===----------------------------------------------------------------------===//
// AsmParser - This class can be implemented by targets that wish to implement
// .s file parsing.
//
// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
// syntax on X86 for example).
//
class AsmParser {
  // AsmParserClassName - This specifies the suffix to use for the asmparser
  // class.  Generated AsmParser classes are always prefixed with the target
  // name.
  string AsmParserClassName  = "AsmParser";

  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
  // function of the AsmParser class to call on every matched instruction.
  // This can be used to perform target specific instruction post-processing.
  string AsmParserInstCleanup  = "";

  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
  // written register name matcher
  bit ShouldEmitMatchRegisterName = 1;

  /// Does the instruction mnemonic allow '.'
  bit MnemonicContainsDot = 0;
}
def DefaultAsmParser : AsmParser;

//===----------------------------------------------------------------------===//
// AsmParserVariant - Subtargets can have multiple different assembly parsers
// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
// implemented by targets to describe such variants.
//
class AsmParserVariant {
  // Variant - AsmParsers can be of multiple different variants.  Variants are
  // used to support targets that need to parser multiple formats for the
  // assembly language.
  int Variant = 0;

  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
  string Name = "";

  // CommentDelimiter - If given, the delimiter string used to recognize
  // comments which are hard coded in the .td assembler strings for individual
  // instructions.
  string CommentDelimiter = "";

  // RegisterPrefix - If given, the token prefix which indicates a register
  // token. This is used by the matcher to automatically recognize hard coded
  // register tokens as constrained registers, instead of tokens, for the
  // purposes of matching.
  string RegisterPrefix = "";
}
def DefaultAsmParserVariant : AsmParserVariant;

/// AssemblerPredicate - This is a Predicate that can be used when the assembler
/// matches instructions and aliases.
class AssemblerPredicate<string cond, string name = ""> {
  bit AssemblerMatcherPredicate = 1;
  string AssemblerCondString = cond;
  string PredicateName = name;
}

/// TokenAlias - This class allows targets to define assembler token
/// operand aliases. That is, a token literal operand which is equivalent
/// to another, canonical, token literal. For example, ARM allows:
///   vmov.u32 s4, #0  -> vmov.i32, #0
/// 'u32' is a more specific designator for the 32-bit integer type specifier
/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
///   def : TokenAlias<".u32", ".i32">;
///
/// This works by marking the match class of 'From' as a subclass of the
/// match class of 'To'.
class TokenAlias<string From, string To> {
  string FromToken = From;
  string ToToken = To;
}

/// MnemonicAlias - This class allows targets to define assembler mnemonic
/// aliases.  This should be used when all forms of one mnemonic are accepted
/// with a different mnemonic.  For example, X86 allows:
///   sal %al, 1    -> shl %al, 1
///   sal %ax, %cl  -> shl %ax, %cl
///   sal %eax, %cl -> shl %eax, %cl
/// etc.  Though "sal" is accepted with many forms, all of them are directly
/// translated to a shl, so it can be handled with (in the case of X86, it
/// actually has one for each suffix as well):
///   def : MnemonicAlias<"sal", "shl">;
///
/// Mnemonic aliases are mapped before any other translation in the match phase,
/// and do allow Requires predicates, e.g.:
///
///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
///
/// Mnemonic aliases can also be constrained to specific variants, e.g.:
///
///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
///
/// If no variant (e.g., "att" or "intel") is specified then the alias is
/// applied unconditionally.
class MnemonicAlias<string From, string To, string VariantName = ""> {
  string FromMnemonic = From;
  string ToMnemonic = To;
  string AsmVariantName = VariantName;

  // Predicates - Predicates that must be true for this remapping to happen.
  list<Predicate> Predicates = [];
}

/// InstAlias - This defines an alternate assembly syntax that is allowed to
/// match an instruction that has a different (more canonical) assembly
/// representation.
class InstAlias<string Asm, dag Result, int Emit = 1> {
  string AsmString = Asm;      // The .s format to match the instruction with.
  dag ResultInst = Result;     // The MCInst to generate.

  // This determines which order the InstPrinter detects aliases for
  // printing. A larger value makes the alias more likely to be
  // emitted. The Instruction's own definition is notionally 0.5, so 0
  // disables printing and 1 enables it if there are no conflicting aliases.
  int EmitPriority = Emit;

  // Predicates - Predicates that must be true for this to match.
  list<Predicate> Predicates = [];
}

//===----------------------------------------------------------------------===//
// AsmWriter - This class can be implemented by targets that need to customize
// the format of the .s file writer.
//
// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
// on X86 for example).
//
class AsmWriter {
  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
  // class.  Generated AsmWriter classes are always prefixed with the target
  // name.
  string AsmWriterClassName  = "InstPrinter";

  // Variant - AsmWriters can be of multiple different variants.  Variants are
  // used to support targets that need to emit assembly code in ways that are
  // mostly the same for different targets, but have minor differences in
  // syntax.  If the asmstring contains {|} characters in them, this integer
  // will specify which alternative to use.  For example "{x|y|z}" with Variant
  // == 1, will expand to "y".
  int Variant = 0;

  // OperandSpacing - Space between operand columns.
  int OperandSpacing = -1;
}
def DefaultAsmWriter : AsmWriter;


//===----------------------------------------------------------------------===//
// Target - This class contains the "global" target information
//
class Target {
  // InstructionSet - Instruction set description for this target.
  InstrInfo InstructionSet;

  // AssemblyParsers - The AsmParser instances available for this target.
  list<AsmParser> AssemblyParsers = [DefaultAsmParser];

  /// AssemblyParserVariants - The AsmParserVariant instances available for
  /// this target.
  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];

  // AssemblyWriters - The AsmWriter instances available for this target.
  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
}

//===----------------------------------------------------------------------===//
// SubtargetFeature - A characteristic of the chip set.
//
class SubtargetFeature<string n, string a,  string v, string d,
                       list<SubtargetFeature> i = []> {
  // Name - Feature name.  Used by command line (-mattr=) to determine the
  // appropriate target chip.
  //
  string Name = n;

  // Attribute - Attribute to be set by feature.
  //
  string Attribute = a;

  // Value - Value the attribute to be set to by feature.
  //
  string Value = v;

  // Desc - Feature description.  Used by command line (-mattr=) to display help
  // information.
  //
  string Desc = d;

  // Implies - Features that this feature implies are present. If one of those
  // features isn't set, then this one shouldn't be set either.
  //
  list<SubtargetFeature> Implies = i;
}

/// Specifies a Subtarget feature that this instruction is deprecated on.
class Deprecated<SubtargetFeature dep> {
  SubtargetFeature DeprecatedFeatureMask = dep;
}

/// A custom predicate used to determine if an instruction is
/// deprecated or not.
class ComplexDeprecationPredicate<string dep> {
  string ComplexDeprecationPredicate = dep;
}

//===----------------------------------------------------------------------===//
// Processor chip sets - These values represent each of the chip sets supported
// by the scheduler.  Each Processor definition requires corresponding
// instruction itineraries.
//
class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
  // appropriate target chip.
  //
  string Name = n;

  // SchedModel - The machine model for scheduling and instruction cost.
  //
  SchedMachineModel SchedModel = NoSchedModel;

  // ProcItin - The scheduling information for the target processor.
  //
  ProcessorItineraries ProcItin = pi;

  // Features - list of
  list<SubtargetFeature> Features = f;
}

// ProcessorModel allows subtargets to specify the more general
// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
// gradually move to this newer form.
//
// Although this class always passes NoItineraries to the Processor
// class, the SchedMachineModel may still define valid Itineraries.
class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
  : Processor<n, NoItineraries, f> {
  let SchedModel = m;
}

//===----------------------------------------------------------------------===//
// InstrMapping - This class is used to create mapping tables to relate
// instructions with each other based on the values specified in RowFields,
// ColFields, KeyCol and ValueCols.
//
class InstrMapping {
  // FilterClass - Used to limit search space only to the instructions that
  // define the relationship modeled by this InstrMapping record.
  string FilterClass;

  // RowFields - List of fields/attributes that should be same for all the
  // instructions in a row of the relation table. Think of this as a set of
  // properties shared by all the instructions related by this relationship
  // model and is used to categorize instructions into subgroups. For instance,
  // if we want to define a relation that maps 'Add' instruction to its
  // predicated forms, we can define RowFields like this:
  //
  // let RowFields = BaseOp
  // All add instruction predicated/non-predicated will have to set their BaseOp
  // to the same value.
  //
  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
  list<string> RowFields = [];

  // List of fields/attributes that are same for all the instructions
  // in a column of the relation table.
  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
  // based on the 'predSense' values. All the instruction in a specific
  // column have the same value and it is fixed for the column according
  // to the values set in 'ValueCols'.
  list<string> ColFields = [];

  // Values for the fields/attributes listed in 'ColFields'.
  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
  // that models this relation) should be non-predicated.
  // In the example above, 'Add' is the key instruction.
  list<string> KeyCol = [];

  // List of values for the fields/attributes listed in 'ColFields', one for
  // each column in the relation table.
  //
  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
  // table. First column requires all the instructions to have predSense
  // set to 'true' and second column requires it to be 'false'.
  list<list<string> > ValueCols = [];
}

//===----------------------------------------------------------------------===//
// Pull in the common support for calling conventions.
//
include "llvm/Target/TargetCallingConv.td"

//===----------------------------------------------------------------------===//
// Pull in the common support for DAG isel generation.
//
include "llvm/Target/TargetSelectionDAG.td"