This file is indexed.

/usr/include/zn_poly/zn_poly.h is in libzn-poly-dev 0.9-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/*
   zn_poly.h:  main header file to be #included by zn_poly users
   
   Copyright (C) 2007, 2008, David Harvey
   
   This file is part of the zn_poly library (version 0.9).
   
   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 2 of the License, or
   (at your option) version 3 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef ZN_POLY_H
#define ZN_POLY_H

#ifdef __cplusplus
extern "C" {
#endif
 

#include <stdlib.h>
#include <limits.h>
#include <stdint.h>
#include <assert.h>


#define ZNP_ASSERT assert

#define ZNP_INLINE static inline


/*
   Returns a string like "3.1"
*/
extern const char*
zn_poly_version_string ();


/*
   Three components of "version x.y.z"
*/
#define ZNP_VERSION_MAJOR 0
#define ZNP_VERSION_MINOR 9
#define ZNP_VERSION_REVISION 0


/*
   ULONG_BITS = number of bits per unsigned long
*/
#if ULONG_MAX == 4294967295U
#define ULONG_BITS 32
#elif ULONG_MAX == 18446744073709551615U
#define ULONG_BITS 64
#else
#error zn_poly requires that unsigned long is either 32 bits or 64 bits
#endif


/*
   I get really sick of typing unsigned long.
*/
#ifdef ulong
#undef ulong
#endif
typedef unsigned long  ulong;


#include "wide_arith.h"


/* ============================================================================

     zn_mod_t stuff

============================================================================ */

/*
   zn_mod_t stores precomputed information about a modulus.
   
   The modulus can be any integer in the range 2 <= m < 2^ULONG_BITS.
   
   A modulus m is called "slim" if m < 2^(ULONG_BITS - 1), i.e. the residues
   never occupy the top bit of the word. Many routines are much faster for
   slim moduli.
*/
typedef struct
{
   // the modulus, must be >= 2
   ulong m;
   
   // ceil(log2(m)) = number of bits in a non-negative residue
   int bits;
   
   // reduction of B and B^2 mod m (where B = 2^ULONG_BITS)
   ulong B, B2;
   
   // sh1 and inv1 are respectively ell-1 and m' from Figure 4.1 of [GM94]
   unsigned sh1;
   ulong inv1;
   
   // sh2, sh3, inv2 and m_norm are respectively N-ell, ell-1, m', d_norm
   // from Figure 8.1 of [GM94]
   unsigned sh2, sh3;
   ulong inv2, m_norm;
   
   // inv3 = n^(-1) mod B (only valid if m is odd)
   ulong inv3;
}
zn_mod_struct;

typedef zn_mod_struct  zn_mod_t[1];


/*
   Initialises zn_mod_t with given modulus, performs some (fairly cheap)
   precomputations.
*/
void
zn_mod_init (zn_mod_t mod, ulong m);


/*
   Must be called when the modulus object goes out of scope.
*/
void
zn_mod_clear (zn_mod_t mod);


/*
   Returns the modulus.
*/
ZNP_INLINE ulong
zn_mod_get (const zn_mod_t mod)
{
   return mod->m;
}


/*
   Return nonzero if mod is a slim modulus.
*/
ZNP_INLINE int
zn_mod_is_slim (const zn_mod_t mod)
{
   return (long) mod->m >= 0;
}


/*
   Returns x + y mod m.
   
   Both x and y must be in [0, m).
*/
ZNP_INLINE ulong
zn_mod_add (ulong x, ulong y, const zn_mod_t mod)
{
   ZNP_ASSERT (x < mod->m && y < mod->m);

   ulong temp = mod->m - y;
   if (x < temp)
      return x + y;
   else
      return x - temp;
}


/*
   Same as zn_mod_add, but only for slim moduli.
   
   This is usually several times faster than zn_mod_add, depending on the
   context; see the array-profile target for examples.
*/
ZNP_INLINE ulong
zn_mod_add_slim (ulong x, ulong y, const zn_mod_t mod)
{
   ZNP_ASSERT (zn_mod_is_slim (mod));
   ZNP_ASSERT (x < mod->m && y < mod->m);

   ulong temp = x + y;
   if (temp >= mod->m)
      temp -= mod->m;
   return temp;
}


/*
   Returns x - y mod m.
   
   Both x and y must be in [0, m).
*/
ZNP_INLINE ulong
zn_mod_sub (ulong x, ulong y, const zn_mod_t mod)
{
   ZNP_ASSERT (x < mod->m && y < mod->m);

   ulong temp = x - y;
   if (x < y)
      temp += mod->m;
   return temp;
}


/*
   Same as zn_mod_sub, but only for slim moduli.
*/
ZNP_INLINE ulong
zn_mod_sub_slim (ulong x, ulong y, const zn_mod_t mod)
{
   ZNP_ASSERT (zn_mod_is_slim (mod));
   ZNP_ASSERT (x < mod->m && y < mod->m);

   long temp = x - y;
   temp += (temp < 0) ? mod->m : 0;
   return temp;
}


/*
   Returns -x mod m.

   x must be in [0, m).
*/
ZNP_INLINE ulong
zn_mod_neg (ulong x, const zn_mod_t mod)
{
   ZNP_ASSERT (x < mod->m);
   return x ? (mod->m - x) : x;
}


/*
   Return x/2 mod m.

   x must be in [0, m).
   
   If the modulus is even, x must be even too.
*/
ZNP_INLINE ulong
zn_mod_divby2 (ulong x, const zn_mod_t mod)
{
   ZNP_ASSERT (x < mod->m);
   ZNP_ASSERT ((mod->m & 1) || !(x & 1));

   ulong mask = -(x & 1);
   ulong half = (mod->m >> 1) + 1;    // = 1/2 mod m if m is odd
   return (x >> 1) + (mask & half);
}


/*
   Returns floor(x / m).

   No restrictions on x.
   
   Algorithm is essentially Figure 4.1 of [GM94].
*/
ZNP_INLINE ulong
zn_mod_quotient (ulong x, const zn_mod_t mod)
{
   ulong t;
   ZNP_MUL_HI (t, x, mod->inv1);
   return (t + ((x - t) >> 1)) >> mod->sh1;
}


/*
   Returns x mod m.
   
   No restrictions on x.
*/
ZNP_INLINE ulong
zn_mod_reduce (ulong x, const zn_mod_t mod)
{
   return x - mod->m * zn_mod_quotient (x, mod);
}


/*
   Returns -x/B mod m.
   
   m must be odd.
   
   No restrictions on x.
*/
ZNP_INLINE ulong
zn_mod_reduce_redc (ulong x, const zn_mod_t mod)
{
   ZNP_ASSERT (mod->m & 1);

   ulong y = x * mod->inv3;
   ulong z;
   ZNP_MUL_HI (z, y, mod->m);
   return z;
}



/*
   Returns x1*B + x0 mod m.
   
   Assumes x1 is already in [0, m).

   Algorithm is essentially Figure 8.1 of [GM94].
*/
ZNP_INLINE ulong
zn_mod_reduce_wide (ulong x1, ulong x0, const zn_mod_t mod)
{
   ZNP_ASSERT (x1 < mod->m);

   ulong y1 = (x1 << mod->sh2) + ((x0 >> 1) >> mod->sh3);
   ulong y0 = (x0 << mod->sh2);
   
   ulong sign = y0 >> (ULONG_BITS - 1);
   ulong z0 = y0 + (mod->m_norm & -sign);
   
   ulong a1, a0;
   ZNP_MUL_WIDE (a1, a0, mod->inv2, y1 + sign);
   ZNP_ADD_WIDE (a1, a0, a1, a0, y1, z0);
   
   ulong b1, b0;
   ZNP_MUL_WIDE (b1, b0, (-a1 - 1), mod->m);
   ZNP_ADD_WIDE (b1, b0, b1, b0, x1, x0);
   b1 -= mod->m;
   
   return b0 + (b1 & mod->m);
}


/*
   Returns -(x1*B + x0)/B mod m.
   
   Assumes x1 is already in [0, m), and that m is odd.
   
   Uses essentially Montgomery's REDC algorithm [Mon85].
*/
ZNP_INLINE ulong
zn_mod_reduce_wide_redc (ulong x1, ulong x0, const zn_mod_t mod)
{
   ZNP_ASSERT (mod->m & 1);
   ZNP_ASSERT (x1 < mod->m);
   
   ulong y = x0 * mod->inv3;
   ulong z;
   ZNP_MUL_HI (z, y, mod->m);
   return zn_mod_sub (z, x1, mod);
}


/*
   Returns -(x1*B + x0)/B mod m.
   
   Assumes x1 is already in [0, m), and that m is odd, and that m is slim.
   
   Uses essentially Montgomery's REDC algorithm [Mon85].
*/
ZNP_INLINE ulong
zn_mod_reduce_wide_redc_slim (ulong x1, ulong x0, const zn_mod_t mod)
{
   ZNP_ASSERT (mod->m & 1);
   ZNP_ASSERT (x1 < mod->m);
   
   ulong y = x0 * mod->inv3;
   ulong z;
   ZNP_MUL_HI (z, y, mod->m);
   return zn_mod_sub_slim (z, x1, mod);
}


/*
   Returns x1*B + x0 mod m.

   No restrictions on x0 and x1.
*/
ZNP_INLINE ulong
zn_mod_reduce2 (ulong x1, ulong x0, const zn_mod_t mod)
{
   // first reduce into [0, Bm)
   ulong c0, c1;
   ZNP_MUL_WIDE (c1, c0, x1, mod->B);
   ZNP_ADD_WIDE (c1, c0, c1, c0, 0, x0);
   // (must still have c1 < m)

   return zn_mod_reduce_wide (c1, c0, mod);
}



/*
   Returns -(x1*B + x0)/B mod m.
   
   m must be odd.

   No restrictions on x0 and x1.
*/
ZNP_INLINE ulong
zn_mod_reduce2_redc (ulong x1, ulong x0, const zn_mod_t mod)
{
   ZNP_ASSERT (mod->m & 1);

   // first reduce into [0, Bm)
   ulong c0, c1;
   ZNP_MUL_WIDE (c1, c0, x1, mod->B);
   ZNP_ADD_WIDE (c1, c0, c1, c0, 0, x0);
   // (must still have c1 < m)

   return zn_mod_reduce_wide_redc (c1, c0, mod);
}


/*
   Returns x2*B^2 + x1*B + x0 mod m.

   No restrictions on x0, x1 or x2.
*/
ZNP_INLINE ulong
zn_mod_reduce3 (ulong x2, ulong x1, ulong x0, const zn_mod_t mod)
{
   // reduce B^2*x2 and B*x1 into [0, Bm)
   ulong c0, c1, d0, d1;
   ZNP_MUL_WIDE (c1, c0, x2, mod->B2);
   ZNP_MUL_WIDE (d1, d0, x1, mod->B);
   
   // add B^2*x2 and B*x1 and x0 mod Bm
   ZNP_ADD_WIDE (c1, c0, c1, c0, 0, d0);
   // (must still have c1 < m)
   ZNP_ADD_WIDE (c1, c0, c1, c0, 0, x0);
   if (c1 >= mod->m)
      c1 -= mod->m;

   c1 = zn_mod_add (c1, d1, mod);

   // finally reduce it mod m
   return zn_mod_reduce_wide (c1, c0, mod);
}



/*
   Returns -(x2*B^2 + x1*B + x0)/B mod m.

   m must be odd.

   No restrictions on x0, x1 or x2.
*/
ZNP_INLINE ulong
zn_mod_reduce3_redc (ulong x2, ulong x1, ulong x0, const zn_mod_t mod)
{
   ZNP_ASSERT (mod->m & 1);

   // reduce B^2*x2 and B*x1 into [0, Bm)
   ulong c0, c1, d0, d1;
   ZNP_MUL_WIDE (c1, c0, x2, mod->B2);
   ZNP_MUL_WIDE (d1, d0, x1, mod->B);
   
   // add B^2*x2 and B*x1 and x0 mod Bm
   ZNP_ADD_WIDE (c1, c0, c1, c0, 0, d0);
   // (must still have c1 < m)
   ZNP_ADD_WIDE (c1, c0, c1, c0, 0, x0);
   if (c1 >= mod->m)
      c1 -= mod->m;

   c1 = zn_mod_add (c1, d1, mod);

   // finally reduce it mod m
   return zn_mod_reduce_wide_redc (c1, c0, mod);
}



/*
   Returns x * y mod m.
   
   x and y must be in [0, m).
*/
ZNP_INLINE ulong
zn_mod_mul (ulong x, ulong y, const zn_mod_t mod)
{
   ZNP_ASSERT (x < mod->m && y < mod->m);

   ulong hi, lo;
   ZNP_MUL_WIDE (hi, lo, x, y);
   return zn_mod_reduce_wide (hi, lo, mod);
}


/*
   Returns -(x * y)/B mod m.
   
   x and y must be in [0, m), and m must be odd.
*/
ZNP_INLINE ulong
zn_mod_mul_redc (ulong x, ulong y, const zn_mod_t mod)
{
   ZNP_ASSERT (mod->m & 1);
   ZNP_ASSERT (x < mod->m && y < mod->m);

   ulong hi, lo;
   ZNP_MUL_WIDE (hi, lo, x, y);
   return zn_mod_reduce_wide_redc (hi, lo, mod);
}


/*
   Returns -(x * y)/B mod m.
   
   x and y must be in [0, m), and m must be odd and slim.
*/
ZNP_INLINE ulong
zn_mod_mul_redc_slim (ulong x, ulong y, const zn_mod_t mod)
{
   ZNP_ASSERT (mod->m & 1);
   ZNP_ASSERT (zn_mod_is_slim (mod));
   ZNP_ASSERT (x < mod->m && y < mod->m);

   ulong hi, lo;
   ZNP_MUL_WIDE (hi, lo, x, y);
   return zn_mod_reduce_wide_redc_slim (hi, lo, mod);
}


/*
   Returns x^k mod m.
   
   x must be in [0, m).
   
   Negative indices are not supported (yet).
*/
ulong
zn_mod_pow (ulong x, long k, const zn_mod_t mod);


/*
   Returns 1/x mod n, or 0 if x is not invertible mod m.
   
   x must be in [0, m).
*/
ulong
zn_mod_invert (ulong x, const zn_mod_t mod);



/* ============================================================================

     scalar multiplication on raw arrays
     
============================================================================ */

/*
   Multiplies each element of op[0, n) by x, stores result at res[0, n).
   
   res and op must be either identical or disjoint buffers.
*/
void
zn_array_scalar_mul (ulong* res, const ulong* op, size_t n, ulong x,
                     const zn_mod_t mod);



/* ============================================================================

     polynomial multiplication on raw arrays
     
============================================================================ */


/*
   Multiplies op1[0, n1) by op2[0, n2), stores result in res[0, n1 + n2 - 1).
   
   op1 and op2 may alias each other, but neither may overlap res.
   
   Must have n1 >= n2 >= 1.
   
   Automatically selects best multiplication algorithm based on modulus
   and input lengths. Automatically uses specialised squaring code if inputs
   buffers are identical.
*/
void
zn_array_mul (ulong* res,
              const ulong* op1, size_t n1,
              const ulong* op2, size_t n2,
              const zn_mod_t mod);


/*
   Middle product of op1[0, n1) and op2[0, n2), stores result in
   res[0, n1 - n2 + 1).
   
   (i.e. this is the subarray of the ordinary product op1 * op2 consisting of
   those coefficients with indices in the range [n2 - 1, n1).)

   op1 and op2 may alias each other, but neither may overlap res.

   Must have n1 >= n2 >= 1.

   Automatically selects best middle product algorithm based on modulus and
   input lengths.
*/
void
zn_array_mulmid (ulong* res,
                 const ulong* op1, size_t n1,
                 const ulong* op2, size_t n2,
                 const zn_mod_t mod);


// forward declaration (see zn_poly_internal.h)
struct ZNP_zn_array_mulmid_fft_precomp1_struct;


/*
   Stores precomputed information for performing a middle product where the
   first input array op1[0, n1) is invariant, and the *length* of the second
   input array op2[0, n2) is invariant.
*/
typedef struct
{
   // Determines which middle product algorithm we're using.
   // One of the constants:
   //    ZNP_MULMID_ALGO_FALLBACK: fall back on zn_array_mulmid
   //    ZNP_MULMID_ALGO_FFT: use zn_array_mulmid_fft_precomp1
   int algo;

   size_t n1, n2;
   const zn_mod_struct* mod;

   // stores a copy of op1[0, n1) if we're using ZNP_MULMID_ALGO_FALLBACK
   ulong* op1;
   
   // precomputed data if we're using ZNP_MULMID_ALGO_FFT
   struct ZNP_zn_array_mulmid_fft_precomp1_struct* precomp_fft;
}
zn_array_mulmid_precomp1_struct;

typedef zn_array_mulmid_precomp1_struct  zn_array_mulmid_precomp1_t[1];


/*
   Initialises res to perform middle product of op1[0, n1) by operands of
   size n2.
*/
void
zn_array_mulmid_precomp1_init (zn_array_mulmid_precomp1_t res,
                               const ulong* op1, size_t n1, size_t n2,
                               const zn_mod_t mod);

/*
   Performs middle product of op1[0, n1) by op2[0, n2), stores result
   at res[0, n1 - n2 + 1).
*/
void
zn_array_mulmid_precomp1_execute (ulong* res, const ulong* op2,
                                  const zn_array_mulmid_precomp1_t precomp);


/*
   Deallocates op.
*/
void
zn_array_mulmid_precomp1_clear (zn_array_mulmid_precomp1_t op);



/*
   Same as zn_array_mul(), but uses the Schonhage/Nussbaumer FFT algorithm,
   with a few layers of naive DFT to save memory.
   
   lgT is the number of layers of DFT. Larger values of lgT save more memory,
   as long as lgT doesn't get too close to lg2(sqrt(n1 + n2)). Larger
   values also make the function slower. Probably you never want to make lgT
   bigger than 4; after that the savings are marginal.

   The modulus must be odd.

   Output may *not* overlap inputs.
   
   NOTE: this interface is preliminary and may change in future versions.
*/
void
zn_array_mul_fft_dft (ulong* res,
                      const ulong* op1, size_t n1,
                      const ulong* op2, size_t n2,
                      unsigned lgT, const zn_mod_t mod);



/* ============================================================================

     polynomial division on raw arrays
     
============================================================================ */


/*
   NOTE: this interface is going to *change* in a future version of zn_poly!

   Computes n terms of power series inverse of op[0, n).
   
   Must have n >= 1.
   
   Currently restricted to op[0] == 1.
   
   Output may not overlap input.
*/
void
zn_array_invert (ulong* res, const ulong* op, size_t n, const zn_mod_t mod);



/* ============================================================================

     other miscellaneous zn_array stuff

============================================================================ */


/*
   res := -op
   
   Inputs and outputs in [0, m).
*/
void
zn_array_neg (ulong* res, const ulong* op, size_t n, const zn_mod_t mod);


/*
   res := op1 - op2.
   
   Inputs and outputs in [0, m).
*/
void
zn_array_sub (ulong* res, const ulong* op1, const ulong* op2, size_t n,
              const zn_mod_t mod);


/*
   Returns zero if op1[0, n) and op2[0, n) are equal, otherwise nonzero.
*/
int
zn_array_cmp (const ulong* op1, const ulong* op2, size_t n);


/*
   Copies op[0, n) to res[0, n).
   
   Buffers must not overlap.
*/
void
zn_array_copy (ulong* res, const ulong* op, size_t n);


/*
   Sets res[0, n) to zero.
*/
ZNP_INLINE void
zn_array_zero (ulong* res, size_t n)
{
   for (; n; n--)
      *res++ = 0;
}


#ifdef __cplusplus
}
#endif

#endif

// end of file ****************************************************************