This file is indexed.

/usr/include/z3_api.h is in libz3-dev 4.4.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
/*++
Copyright (c) 2015 Microsoft Corporation

--*/

#ifndef _Z3_API_H_
#define _Z3_API_H_

#ifdef CAMLIDL
  #ifdef MLAPIV3
    #define ML3only
    #define CorML3
  #else
    #define ML4only
    #define CorML4
  #endif
#else
  #define Conly
  #define CorML3
  #define CorML4
#endif

#ifdef CorML3
DEFINE_TYPE(Z3_symbol);
DEFINE_TYPE(Z3_literals);
DEFINE_TYPE(Z3_theory);
DEFINE_TYPE(Z3_config);
DEFINE_TYPE(Z3_context);
DEFINE_TYPE(Z3_sort);
#define Z3_sort_opt Z3_sort
DEFINE_TYPE(Z3_func_decl);
DEFINE_TYPE(Z3_ast);
#define Z3_ast_opt Z3_ast
DEFINE_TYPE(Z3_app);
DEFINE_TYPE(Z3_pattern);
DEFINE_TYPE(Z3_model);
DEFINE_TYPE(Z3_constructor);
DEFINE_TYPE(Z3_constructor_list);
#endif
#ifdef Conly
DEFINE_TYPE(Z3_params);
DEFINE_TYPE(Z3_param_descrs);
DEFINE_TYPE(Z3_goal);
DEFINE_TYPE(Z3_tactic);
DEFINE_TYPE(Z3_probe);
DEFINE_TYPE(Z3_stats);
DEFINE_TYPE(Z3_solver);
DEFINE_TYPE(Z3_ast_vector);
DEFINE_TYPE(Z3_ast_map);
DEFINE_TYPE(Z3_apply_result);
DEFINE_TYPE(Z3_func_interp);
#define Z3_func_interp_opt Z3_func_interp
DEFINE_TYPE(Z3_func_entry);
DEFINE_TYPE(Z3_fixedpoint);
DEFINE_TYPE(Z3_optimize);
DEFINE_TYPE(Z3_rcf_num);
DEFINE_VOID(Z3_theory_data);
#endif

#ifndef __int64
#define __int64 long long
#endif

#ifndef __uint64
#define __uint64 unsigned long long
#endif

/**
   \defgroup capi C API

*/
/*@{*/

/**
   @name Types
   
   \conly Most of the types in the C API are opaque pointers.
   \mlonly Most of the types in the API are abstract. \endmlonly

   \conly - \c Z3_config: configuration object used to initialize logical contexts.
   - \c Z3_context: manager of all other Z3 objects, global configuration options, etc.
   - \c Z3_symbol: Lisp-like symbol used to name types, constants, and functions.  A symbol can be created using string or integers.
   - \c Z3_ast: abstract syntax tree node. That is, the data-structure used in Z3 to represent terms, formulas and types.
   - \c Z3_sort: kind of AST used to represent types.
   - \c Z3_func_decl: kind of AST used to represent function symbols.
   - \c Z3_app: kind of AST used to represent function applications.
   - \c Z3_pattern: kind of AST used to represent pattern and multi-patterns used to guide quantifier instantiation.
   \conly - \c Z3_constructor: type constructor for a (recursive) datatype.
   - \c Z3_params: parameter set used to configure many components such as: simplifiers, tactics, solvers, etc.
   - \c Z3_model: model for the constraints asserted into the logical context.
   - \c Z3_func_interp: interpretation of a function in a model.
   - \c Z3_func_entry: representation of the value of a \c Z3_func_interp at a particular point.
   - \c Z3_fixedpoint: context for the recursive predicate solver.
   - \c Z3_optimize: context for solving optimization queries.
   - \c Z3_ast_vector: vector of \c Z3_ast objects.
   - \c Z3_ast_map: mapping from \c Z3_ast to \c Z3_ast objects.
   - \c Z3_goal: set of formulas that can be solved and/or transformed using tactics and solvers.
   - \c Z3_tactic: basic building block for creating custom solvers for specific problem domains.
   - \c Z3_probe: function/predicate used to inspect a goal and collect information that may be used to decide which solver and/or preprocessing step will be used.
   - \c Z3_apply_result: collection of subgoals resulting from applying of a tactic to a goal.
   - \c Z3_solver: (incremental) solver, possibly specialized by a particular tactic or logic.
   - \c Z3_stats: statistical data for a solver.
*/

#ifdef Conly
/**
   \brief Z3 Boolean type. It is just an alias for \c int.
*/
typedef int Z3_bool;
#else
#define Z3_bool boolean
#endif

#ifdef Conly
/**
   \brief Z3 string type. It is just an alias for <tt>const char *</tt>.
*/
typedef const char * Z3_string;
typedef Z3_string * Z3_string_ptr;
#else
typedef [string] const char * Z3_string;
#define Z3_string_ptr Z3_string *
#endif
    
#ifdef Conly
/**
   \brief True value. It is just an alias for \c 1.
*/
#define Z3_TRUE  1

/**
   \brief False value. It is just an alias for \c 0.
*/
#define Z3_FALSE 0

#endif

/**
   \mlonly {!lbool} \endmlonly \conly \brief
   Lifted Boolean type: \c false, \c undefined, \c true.
*/
typedef enum 
{
    Z3_L_FALSE = -1,
    Z3_L_UNDEF,
    Z3_L_TRUE
} Z3_lbool;

/**
   \mlonly {!symbol_kind} \endmlonly \conly \brief
   The different kinds of symbol.
   In Z3, a symbol can be represented using integers and strings (See #Z3_get_symbol_kind).

   \sa Z3_mk_int_symbol
   \sa Z3_mk_string_symbol
*/
typedef enum 
{
    Z3_INT_SYMBOL,
    Z3_STRING_SYMBOL 
} Z3_symbol_kind;


/**
   \mlonly {!parameter_kind} \endmlonly \conly \brief
   The different kinds of parameters that can be associated with function symbols.
   \sa Z3_get_decl_num_parameters
   \sa Z3_get_decl_parameter_kind

   - Z3_PARAMETER_INT is used for integer parameters.
   - Z3_PARAMETER_DOUBLE is used for double parameters.
   - Z3_PARAMETER_RATIONAL is used for parameters that are rational numbers.
   - Z3_PARAMETER_SYMBOL is used for parameters that are symbols.
   - Z3_PARAMETER_SORT is used for sort parameters.
   - Z3_PARAMETER_AST is used for expression parameters.
   - Z3_PARAMETER_FUNC_DECL is used for function declaration parameters.
*/
typedef enum 
{
    Z3_PARAMETER_INT,
    Z3_PARAMETER_DOUBLE,
    Z3_PARAMETER_RATIONAL,
    Z3_PARAMETER_SYMBOL,
    Z3_PARAMETER_SORT,
    Z3_PARAMETER_AST,
    Z3_PARAMETER_FUNC_DECL,
} Z3_parameter_kind;

/**
   \mlonly {!sort_kind} \endmlonly \conly \brief
   The different kinds of Z3 types (See #Z3_get_sort_kind).
*/
typedef enum 
{
    Z3_UNINTERPRETED_SORT,
    Z3_BOOL_SORT,
    Z3_INT_SORT,
    Z3_REAL_SORT,
    Z3_BV_SORT,
    Z3_ARRAY_SORT,
    Z3_DATATYPE_SORT,
    Z3_RELATION_SORT,
    Z3_FINITE_DOMAIN_SORT,
    Z3_FLOATING_POINT_SORT,
    Z3_ROUNDING_MODE_SORT,
    Z3_UNKNOWN_SORT = 1000
} Z3_sort_kind;

/**
   \mlonly {!ast_kind} \endmlonly \conly \brief
   The different kinds of Z3 AST (abstract syntax trees). That is, terms, formulas and types.

   - Z3_APP_AST:            constant and applications
   - Z3_NUMERAL_AST:        numeral constants
   - Z3_VAR_AST:            bound variables
   - Z3_QUANTIFIER_AST:     quantifiers
   - Z3_SORT_AST:           sort
   - Z3_FUNC_DECL_AST:      function declaration
   - Z3_UNKNOWN_AST:        internal
*/
typedef enum 
{
    Z3_NUMERAL_AST,
    Z3_APP_AST,         
    Z3_VAR_AST,          
    Z3_QUANTIFIER_AST,    
    Z3_SORT_AST,
    Z3_FUNC_DECL_AST,
    Z3_UNKNOWN_AST = 1000 
} Z3_ast_kind;

/**
   \mlonly {!decl_kind} \endmlonly \conly \brief
   The different kinds of interpreted function kinds.

   - Z3_OP_TRUE The constant true.

   - Z3_OP_FALSE The constant false.

   - Z3_OP_EQ The equality predicate.

   - Z3_OP_DISTINCT The n-ary distinct predicate (every argument is mutually distinct).

   - Z3_OP_ITE The ternary if-then-else term.

   - Z3_OP_AND n-ary conjunction.

   - Z3_OP_OR n-ary disjunction.

   - Z3_OP_IFF equivalence (binary).

   - Z3_OP_XOR Exclusive or.

   - Z3_OP_NOT Negation.

   - Z3_OP_IMPLIES Implication.

   - Z3_OP_OEQ Binary equivalence modulo namings. This binary predicate is used in proof terms.
        It captures equisatisfiability and equivalence modulo renamings.

   - Z3_OP_INTERP Marks a sub-formula for interpolation.

   - Z3_OP_ANUM Arithmetic numeral.

   - Z3_OP_AGNUM Arithmetic algebraic numeral. Algebraic numbers are used to represent irrational numbers in Z3.

   - Z3_OP_LE <=.

   - Z3_OP_GE >=.

   - Z3_OP_LT <.

   - Z3_OP_GT >.

   - Z3_OP_ADD Addition - Binary.

   - Z3_OP_SUB Binary subtraction.

   - Z3_OP_UMINUS Unary minus.

   - Z3_OP_MUL Multiplication - Binary.

   - Z3_OP_DIV Division - Binary.

   - Z3_OP_IDIV Integer division - Binary.

   - Z3_OP_REM Remainder - Binary.

   - Z3_OP_MOD Modulus - Binary.

   - Z3_OP_TO_REAL Coercion of integer to real - Unary.

   - Z3_OP_TO_INT Coercion of real to integer - Unary.

   - Z3_OP_IS_INT Check if real is also an integer - Unary.

   - Z3_OP_POWER Power operator x^y.

   - Z3_OP_STORE Array store. It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
        Array store takes at least 3 arguments. 

   - Z3_OP_SELECT Array select. 

   - Z3_OP_CONST_ARRAY The constant array. For example, select(const(v),i) = v holds for every v and i. The function is unary.

   - Z3_OP_ARRAY_DEFAULT Default value of arrays. For example default(const(v)) = v. The function is unary.

   - Z3_OP_ARRAY_MAP Array map operator.
         It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.

   - Z3_OP_SET_UNION Set union between two Booelan arrays (two arrays whose range type is Boolean). The function is binary.

   - Z3_OP_SET_INTERSECT Set intersection between two Boolean arrays. The function is binary.

   - Z3_OP_SET_DIFFERENCE Set difference between two Boolean arrays. The function is binary.

   - Z3_OP_SET_COMPLEMENT Set complement of a Boolean array. The function is unary.

   - Z3_OP_SET_SUBSET Subset predicate between two Boolean arrays. The relation is binary.

   - Z3_OP_AS_ARRAY An array value that behaves as the function graph of the
                    function passed as parameter.

   - Z3_OP_BNUM Bit-vector numeral.

   - Z3_OP_BIT1 One bit bit-vector.

   - Z3_OP_BIT0 Zero bit bit-vector.

   - Z3_OP_BNEG Unary minus.

   - Z3_OP_BADD Binary addition.

   - Z3_OP_BSUB Binary subtraction.

   - Z3_OP_BMUL Binary multiplication.
    
   - Z3_OP_BSDIV Binary signed division.

   - Z3_OP_BUDIV Binary unsigned division.

   - Z3_OP_BSREM Binary signed remainder.

   - Z3_OP_BUREM Binary unsigned remainder.

   - Z3_OP_BSMOD Binary signed modulus.

   - Z3_OP_BSDIV0 Unary function. bsdiv(x,0) is congruent to bsdiv0(x).

   - Z3_OP_BUDIV0 Unary function. budiv(x,0) is congruent to budiv0(x).

   - Z3_OP_BSREM0 Unary function. bsrem(x,0) is congruent to bsrem0(x).

   - Z3_OP_BUREM0 Unary function. burem(x,0) is congruent to burem0(x).

   - Z3_OP_BSMOD0 Unary function. bsmod(x,0) is congruent to bsmod0(x).
    
   - Z3_OP_ULEQ Unsigned bit-vector <= - Binary relation.

   - Z3_OP_SLEQ Signed bit-vector  <= - Binary relation.

   - Z3_OP_UGEQ Unsigned bit-vector  >= - Binary relation.

   - Z3_OP_SGEQ Signed bit-vector  >= - Binary relation.

   - Z3_OP_ULT Unsigned bit-vector  < - Binary relation.

   - Z3_OP_SLT Signed bit-vector < - Binary relation.

   - Z3_OP_UGT Unsigned bit-vector > - Binary relation.

   - Z3_OP_SGT Signed bit-vector > - Binary relation.

   - Z3_OP_BAND Bit-wise and - Binary.

   - Z3_OP_BOR Bit-wise or - Binary.

   - Z3_OP_BNOT Bit-wise not - Unary.

   - Z3_OP_BXOR Bit-wise xor - Binary.

   - Z3_OP_BNAND Bit-wise nand - Binary.

   - Z3_OP_BNOR Bit-wise nor - Binary.

   - Z3_OP_BXNOR Bit-wise xnor - Binary.

   - Z3_OP_CONCAT Bit-vector concatenation - Binary.

   - Z3_OP_SIGN_EXT Bit-vector sign extension.

   - Z3_OP_ZERO_EXT Bit-vector zero extension.

   - Z3_OP_EXTRACT Bit-vector extraction.

   - Z3_OP_REPEAT Repeat bit-vector n times.

   - Z3_OP_BREDOR Bit-vector reduce or - Unary.

   - Z3_OP_BREDAND Bit-vector reduce and - Unary.

   - Z3_OP_BCOMP .

   - Z3_OP_BSHL Shift left.

   - Z3_OP_BLSHR Logical shift right.

   - Z3_OP_BASHR Arithmetical shift right.

   - Z3_OP_ROTATE_LEFT Left rotation.

   - Z3_OP_ROTATE_RIGHT Right rotation.

   - Z3_OP_EXT_ROTATE_LEFT (extended) Left rotation. Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.

   - Z3_OP_EXT_ROTATE_RIGHT (extended) Right rotation. Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.

   - Z3_OP_INT2BV Coerce integer to bit-vector. NB. This function
       is not supported by the decision procedures. Only the most
       rudimentary simplification rules are applied to this function.

   - Z3_OP_BV2INT Coerce bit-vector to integer. NB. This function
       is not supported by the decision procedures. Only the most
       rudimentary simplification rules are applied to this function.

   - Z3_OP_CARRY Compute the carry bit in a full-adder. 
       The meaning is given by the equivalence
       (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))

   - Z3_OP_XOR3 Compute ternary XOR.
       The meaning is given by the equivalence
       (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)

   - Z3_OP_PR_UNDEF: Undef/Null proof object.

   - Z3_OP_PR_TRUE: Proof for the expression 'true'.

   - Z3_OP_PR_ASSERTED: Proof for a fact asserted by the user.
   
   - Z3_OP_PR_GOAL: Proof for a fact (tagged as goal) asserted by the user.

   - Z3_OP_PR_MODUS_PONENS: Given a proof for p and a proof for (implies p q), produces a proof for q.
       \nicebox{
          T1: p
          T2: (implies p q)
          [mp T1 T2]: q
          }
          The second antecedents may also be a proof for (iff p q).

   - Z3_OP_PR_REFLEXIVITY: A proof for (R t t), where R is a reflexive relation. This proof object has no antecedents.
        The only reflexive relations that are used are 
        equivalence modulo namings, equality and equivalence.
        That is, R is either '~', '=' or 'iff'.

   - Z3_OP_PR_SYMMETRY: Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
          \nicebox{
          T1: (R t s)
          [symmetry T1]: (R s t)
          }
          T1 is the antecedent of this proof object.

   - Z3_OP_PR_TRANSITIVITY: Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
       for (R t u).
       \nicebox{
       T1: (R t s)
       T2: (R s u)
       [trans T1 T2]: (R t u)
       }

   - Z3_OP_PR_TRANSITIVITY_STAR: Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1.
     It combines several symmetry and transitivity proofs. 

          Example:
          \nicebox{
          T1: (R a b)
          T2: (R c b)
          T3: (R c d)
          [trans* T1 T2 T3]: (R a d)
          }
          R must be a symmetric and transitive relation.

          Assuming that this proof object is a proof for (R s t), then
          a proof checker must check if it is possible to prove (R s t)
          using the antecedents, symmetry and transitivity.  That is, 
          if there is a path from s to t, if we view every
          antecedent (R a b) as an edge between a and b.

   - Z3_OP_PR_MONOTONICITY: Monotonicity proof object.
          \nicebox{
          T1: (R t_1 s_1)
          ...
          Tn: (R t_n s_n)
          [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
          }
          Remark: if t_i == s_i, then the antecedent Ti is suppressed.
          That is, reflexivity proofs are supressed to save space.

   - Z3_OP_PR_QUANT_INTRO: Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).

       T1: (~ p q)
       [quant-intro T1]: (~ (forall (x) p) (forall (x) q))
   
   - Z3_OP_PR_DISTRIBUTIVITY: Distributivity proof object. 
          Given that f (= or) distributes over g (= and), produces a proof for

          (= (f a (g c d))
             (g (f a c) (f a d)))

          If f and g are associative, this proof also justifies the following equality:

          (= (f (g a b) (g c d))
             (g (f a c) (f a d) (f b c) (f b d)))

          where each f and g can have arbitrary number of arguments.

          This proof object has no antecedents.
          Remark. This rule is used by the CNF conversion pass and 
          instantiated by f = or, and g = and.
    
   - Z3_OP_PR_AND_ELIM: Given a proof for (and l_1 ... l_n), produces a proof for l_i
        
       \nicebox{
       T1: (and l_1 ... l_n)
       [and-elim T1]: l_i
       }
   - Z3_OP_PR_NOT_OR_ELIM: Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).

       \nicebox{
       T1: (not (or l_1 ... l_n))
       [not-or-elim T1]: (not l_i)
       }

   - Z3_OP_PR_REWRITE: A proof for a local rewriting step (= t s).
          The head function symbol of t is interpreted.

          This proof object has no antecedents.
          The conclusion of a rewrite rule is either an equality (= t s), 
          an equivalence (iff t s), or equi-satisfiability (~ t s).
          Remark: if f is bool, then = is iff.
          

          Examples:
          \nicebox{
          (= (+ x 0) x)
          (= (+ x 1 2) (+ 3 x))
          (iff (or x false) x)
          }

   - Z3_OP_PR_REWRITE_STAR: A proof for rewriting an expression t into an expression s.
       This proof object is used if the parameter PROOF_MODE is 1.
       This proof object can have n antecedents.
       The antecedents are proofs for equalities used as substitution rules.
       The object is also used in a few cases if the parameter PROOF_MODE is 2.
       The cases are:
         - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
         - When converting bit-vectors to Booleans (BIT2BOOL=true)
         - When pulling ite expression up (PULL_CHEAP_ITE_TREES=true)

   - Z3_OP_PR_PULL_QUANT: A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.

   - Z3_OP_PR_PULL_QUANT_STAR: A proof for (iff P Q) where Q is in prenex normal form.
       This proof object is only used if the parameter PROOF_MODE is 1.       
       This proof object has no antecedents.
  
   - Z3_OP_PR_PUSH_QUANT: A proof for:

       \nicebox{
          (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
               (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
                 ... 
               (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
               }
         This proof object has no antecedents.

   - Z3_OP_PR_ELIM_UNUSED_VARS:  
          A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
                           (forall (x_1 ... x_n) p[x_1 ... x_n])) 

          It is used to justify the elimination of unused variables.
          This proof object has no antecedents.

   - Z3_OP_PR_DER: A proof for destructive equality resolution:
          (iff (forall (x) (or (not (= x t)) P[x])) P[t])
          if x does not occur in t.

          This proof object has no antecedents.
          
          Several variables can be eliminated simultaneously.

   - Z3_OP_PR_QUANT_INST: A proof of (or (not (forall (x) (P x))) (P a))

   - Z3_OP_PR_HYPOTHESIS: Mark a hypothesis in a natural deduction style proof.

   - Z3_OP_PR_LEMMA: 

       \nicebox{
          T1: false
          [lemma T1]: (or (not l_1) ... (not l_n))
          }
          This proof object has one antecedent: a hypothetical proof for false.
          It converts the proof in a proof for (or (not l_1) ... (not l_n)),
          when T1 contains the open hypotheses: l_1, ..., l_n.
          The hypotheses are closed after an application of a lemma.
          Furthermore, there are no other open hypotheses in the subtree covered by
          the lemma.

   - Z3_OP_PR_UNIT_RESOLUTION: 
       \nicebox{
          T1:      (or l_1 ... l_n l_1' ... l_m')
          T2:      (not l_1)
          ...
          T(n+1):  (not l_n)
          [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
          }

   - Z3_OP_PR_IFF_TRUE: 
      \nicebox{
       T1: p
       [iff-true T1]: (iff p true)
       }

   - Z3_OP_PR_IFF_FALSE:
      \nicebox{
       T1: (not p)
       [iff-false T1]: (iff p false)
       }

   - Z3_OP_PR_COMMUTATIVITY:

          [comm]: (= (f a b) (f b a))
          
          f is a commutative operator.

          This proof object has no antecedents.
          Remark: if f is bool, then = is iff.
   
   - Z3_OP_PR_DEF_AXIOM: Proof object used to justify Tseitin's like axioms:
       
          \nicebox{
          (or (not (and p q)) p)
          (or (not (and p q)) q)
          (or (not (and p q r)) p)
          (or (not (and p q r)) q)
          (or (not (and p q r)) r)
          ...
          (or (and p q) (not p) (not q))
          (or (not (or p q)) p q)
          (or (or p q) (not p))
          (or (or p q) (not q))
          (or (not (iff p q)) (not p) q)
          (or (not (iff p q)) p (not q))
          (or (iff p q) (not p) (not q))
          (or (iff p q) p q)
          (or (not (ite a b c)) (not a) b)
          (or (not (ite a b c)) a c)
          (or (ite a b c) (not a) (not b))
          (or (ite a b c) a (not c))
          (or (not (not a)) (not a))
          (or (not a) a)
          }
          This proof object has no antecedents.
          Note: all axioms are propositional tautologies.
          Note also that 'and' and 'or' can take multiple arguments.
          You can recover the propositional tautologies by
          unfolding the Boolean connectives in the axioms a small
          bounded number of steps (=3).
    
   - Z3_OP_PR_DEF_INTRO: Introduces a name for a formula/term.
       Suppose e is an expression with free variables x, and def-intro
       introduces the name n(x). The possible cases are:

       When e is of Boolean type:
       [def-intro]: (and (or n (not e)) (or (not n) e))

       or:
       [def-intro]: (or (not n) e)
       when e only occurs positively.

       When e is of the form (ite cond th el):
       [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))

       Otherwise:
       [def-intro]: (= n e)       

   - Z3_OP_PR_APPLY_DEF: 
       [apply-def T1]: F ~ n
       F is 'equivalent' to n, given that T1 is a proof that
       n is a name for F.
   
   - Z3_OP_PR_IFF_OEQ:
       T1: (iff p q)
       [iff~ T1]: (~ p q)
 
   - Z3_OP_PR_NNF_POS: Proof for a (positive) NNF step. Example:
       \nicebox{
          T1: (not s_1) ~ r_1
          T2: (not s_2) ~ r_2
          T3: s_1 ~ r_1'
          T4: s_2 ~ r_2'
          [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
                                    (and (or r_1 r_2') (or r_1' r_2)))
          }
       The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
       (a) When creating the NNF of a positive force quantifier.
        The quantifier is retained (unless the bound variables are eliminated).
        Example
        \nicebox{
           T1: q ~ q_new 
           [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
        }
       (b) When recursively creating NNF over Boolean formulas, where the top-level
       connective is changed during NNF conversion. The relevant Boolean connectives
       for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
       NNF_NEG furthermore handles the case where negation is pushed
       over Boolean connectives 'and' and 'or'.

    
   - Z3_OP_PR_NNF_NEG: Proof for a (negative) NNF step. Examples:
          \nicebox{
          T1: (not s_1) ~ r_1
          ...
          Tn: (not s_n) ~ r_n
         [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
      and
          T1: (not s_1) ~ r_1
          ...
          Tn: (not s_n) ~ r_n
         [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
      and
          T1: (not s_1) ~ r_1
          T2: (not s_2) ~ r_2
          T3: s_1 ~ r_1'
          T4: s_2 ~ r_2'
         [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
                                   (and (or r_1 r_2) (or r_1' r_2')))
       }
   - Z3_OP_PR_NNF_STAR: A proof for (~ P Q) where Q is in negation normal form.
       
       This proof object is only used if the parameter PROOF_MODE is 1.       
              
       This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.

   - Z3_OP_PR_CNF_STAR: A proof for (~ P Q) where Q is in conjunctive normal form.
       This proof object is only used if the parameter PROOF_MODE is 1.       
       This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.          

   - Z3_OP_PR_SKOLEMIZE: Proof for:  
       
          \nicebox{
          [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
          [sk]: (~ (exists x (p x y)) (p (sk y) y))
          }

          This proof object has no antecedents.
   
   - Z3_OP_PR_MODUS_PONENS_OEQ: Modus ponens style rule for equi-satisfiability.
       \nicebox{
          T1: p
          T2: (~ p q)
          [mp~ T1 T2]: q
          }

    - Z3_OP_PR_TH_LEMMA: Generic proof for theory lemmas.

         The theory lemma function comes with one or more parameters.
         The first parameter indicates the name of the theory.
         For the theory of arithmetic, additional parameters provide hints for
         checking the theory lemma. 
         The hints for arithmetic are:
         
         - farkas - followed by rational coefficients. Multiply the coefficients to the
           inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.

         - triangle-eq - Indicates a lemma related to the equivalence:
         \nicebox{
            (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
         }

         - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.


    - Z3_OP_PR_HYPER_RESOLVE: Hyper-resolution rule.

        The premises of the rules is a sequence of clauses.
        The first clause argument is the main clause of the rule.
        with a literal from the first (main) clause.

        Premises of the rules are of the form
        \nicebox{
                (or l0 l1 l2 .. ln)
        }
        or
        \nicebox{
             (=> (and l1 l2 .. ln) l0)
        }
        or in the most general (ground) form:
        \nicebox{
             (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln))
        }
        In other words we use the following (Prolog style) convention for Horn 
        implications:
        The head of a Horn implication is position 0,
        the first conjunct in the body of an implication is position 1
        the second conjunct in the body of an implication is position 2

        For general implications where the head is a disjunction, the
        first n positions correspond to the n disjuncts in the head.
        The next m positions correspond to the m conjuncts in the body.

        The premises can be universally quantified so that the most
        general non-ground form is:

        \nicebox{
             (forall (vars) (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln)))
        }

        The hyper-resolution rule takes a sequence of parameters.
        The parameters are substitutions of bound variables separated by pairs
        of literal positions from the main clause and side clause.


      - Z3_OP_RA_STORE: Insert a record into a relation.
        The function takes \c n+1 arguments, where the first argument is the relation and the remaining \c n elements 
        correspond to the \c n columns of the relation.

      - Z3_OP_RA_EMPTY: Creates the empty relation. 
        
      - Z3_OP_RA_IS_EMPTY: Tests if the relation is empty.

      - Z3_OP_RA_JOIN: Create the relational join.

      - Z3_OP_RA_UNION: Create the union or convex hull of two relations. 
        The function takes two arguments.

      - Z3_OP_RA_WIDEN: Widen two relations.
        The function takes two arguments.

      - Z3_OP_RA_PROJECT: Project the columns (provided as numbers in the parameters).
        The function takes one argument.

      - Z3_OP_RA_FILTER: Filter (restrict) a relation with respect to a predicate.
        The first argument is a relation. 
        The second argument is a predicate with free de-Brujin indices
        corresponding to the columns of the relation.
        So the first column in the relation has index 0.

      - Z3_OP_RA_NEGATION_FILTER: Intersect the first relation with respect to negation
        of the second relation (the function takes two arguments).
        Logically, the specification can be described by a function

           target = filter_by_negation(pos, neg, columns)

        where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
        target are elements in x in pos, such that there is no y in neg that agrees with
        x on the columns c1, d1, .., cN, dN.

    
      - Z3_OP_RA_RENAME: rename columns in the relation. 
        The function takes one argument.
        The parameters contain the renaming as a cycle.
         
      - Z3_OP_RA_COMPLEMENT: Complement the relation.

      - Z3_OP_RA_SELECT: Check if a record is an element of the relation.
        The function takes \c n+1 arguments, where the first argument is a relation,
        and the remaining \c n arguments correspond to a record.

      - Z3_OP_RA_CLONE: Create a fresh copy (clone) of a relation. 
        The function is logically the identity, but
        in the context of a register machine allows
        for \mlonly [OP_RA_UNION] \endmlonly \conly #Z3_OP_RA_UNION
        to perform destructive updates to the first argument.
        

      - Z3_OP_FD_LT: A less than predicate over the finite domain Z3_FINITE_DOMAIN_SORT.

      - Z3_OP_LABEL: A label (used by the Boogie Verification condition generator).
                     The label has two parameters, a string and a Boolean polarity.
                     It takes one argument, a formula.

      - Z3_OP_LABEL_LIT: A label literal (used by the Boogie Verification condition generator).
                     A label literal has a set of string parameters. It takes no arguments.

      - Z3_OP_DT_CONSTRUCTOR: datatype constructor.

      - Z3_OP_DT_RECOGNISER: datatype recognizer.

      - Z3_OP_DT_ACCESSOR: datatype accessor.

      - Z3_OP_DT_UPDATE_FIELD: datatype field update.

      - Z3_OP_PB_AT_MOST: Cardinality constraint. 
              E.g., x + y + z <= 2
      
      - Z3_OP_PB_LE: Generalized Pseudo-Boolean cardinality constraint.
              Example  2*x + 3*y <= 4

      - Z3_OP_PB_GE: Generalized Pseudo-Boolean cardinality constraint.
              Example  2*x + 3*y + 2*z >= 4

      - Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN: Floating-point rounding mode RNE
      
      - Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY: Floating-point rounding mode RNA
      
      - Z3_OP_FPA_RM_TOWARD_POSITIVE: Floating-point rounding mode RTP
      
      - Z3_OP_FPA_RM_TOWARD_NEGATIVE: Floating-point rounding mode RTN
      
      - Z3_OP_FPA_RM_TOWARD_ZERO: Floating-point rounding mode RTZ

      - Z3_OP_FPA_NUM: Floating-point value
      
      - Z3_OP_FPA_PLUS_INF: Floating-point +oo
      
      - Z3_OP_FPA_MINUS_INF: Floating-point -oo
      
      - Z3_OP_FPA_NAN: Floating-point NaN
      
      - Z3_OP_FPA_PLUS_ZERO: Floating-point +zero
      
      - Z3_OP_FPA_MINUS_ZERO: Floating-point -zero

      - Z3_OP_FPA_ADD: Floating-point addition
      
      - Z3_OP_FPA_SUB: Floating-point subtraction
      
      - Z3_OP_FPA_NEG: Floating-point negation

      - Z3_OP_FPA_MUL: Floating-point multiplication
      
      - Z3_OP_FPA_DIV: Floating-point division
      
      - Z3_OP_FPA_REM: Floating-point remainder
      
      - Z3_OP_FPA_ABS: Floating-point absolute value
      
      - Z3_OP_FPA_MIN: Floating-point minimum

      - Z3_OP_FPA_MAX: Floating-point maximum

      - Z3_OP_FPA_FMA: Floating-point fused multiply-add
      
      - Z3_OP_FPA_SQRT: Floating-point square root
      
      - Z3_OP_FPA_ROUND_TO_INTEGRAL: Floating-point round to integral

      - Z3_OP_FPA_EQ: Floating-point equality 

      - Z3_OP_FPA_LT: Floating-point less than
      
      - Z3_OP_FPA_GT: Floating-point greater than
      
      - Z3_OP_FPA_LE: Floating-point less than or equal
      
      - Z3_OP_FPA_GE: Floating-point greater than or equal

      - Z3_OP_FPA_IS_NAN: Floating-point isNaN
      
      - Z3_OP_FPA_IS_INF: Floating-point isInfinite

      - Z3_OP_FPA_IS_ZERO: Floating-point isZero

      - Z3_OP_FPA_IS_NORMAL: Floating-point isNormal

      - Z3_OP_FPA_IS_SUBNORMAL: Floating-point isSubnormal      

      - Z3_OP_FPA_IS_NEGATIVE: Floating-point isNegative

      - Z3_OP_FPA_IS_POSITIVE: Floating-point isPositive

      - Z3_OP_FPA_FP: Floating-point constructor from 3 bit-vectors

      - Z3_OP_FPA_TO_FP: Floating-point conversion (various)

      - Z3_OP_FPA_TO_FP_UNSIGNED: Floating-point conversion from unsigend bit-vector
      
      - Z3_OP_FPA_TO_UBV: Floating-point conversion to unsigned bit-vector

      - Z3_OP_FPA_TO_SBV: Floating-point conversion to signed bit-vector
      
      - Z3_OP_FPA_TO_REAL: Floating-point conversion to real number

      - Z3_OP_FPA_TO_IEEE_BV: Floating-point conversion to IEEE-754 bit-vector
      
      - Z3_OP_UNINTERPRETED: kind used for uninterpreted symbols.
*/
typedef enum {
    // Basic
    Z3_OP_TRUE = 0x100,
    Z3_OP_FALSE,
    Z3_OP_EQ,
    Z3_OP_DISTINCT,
    Z3_OP_ITE,
    Z3_OP_AND,
    Z3_OP_OR,
    Z3_OP_IFF,
    Z3_OP_XOR,
    Z3_OP_NOT,
    Z3_OP_IMPLIES,
    Z3_OP_OEQ,
    Z3_OP_INTERP,

    // Arithmetic
    Z3_OP_ANUM = 0x200,
    Z3_OP_AGNUM,                
    Z3_OP_LE,
    Z3_OP_GE,
    Z3_OP_LT,
    Z3_OP_GT,
    Z3_OP_ADD,
    Z3_OP_SUB,
    Z3_OP_UMINUS,
    Z3_OP_MUL,
    Z3_OP_DIV,
    Z3_OP_IDIV,
    Z3_OP_REM,
    Z3_OP_MOD,
    Z3_OP_TO_REAL,
    Z3_OP_TO_INT,
    Z3_OP_IS_INT,
    Z3_OP_POWER,                

    // Arrays & Sets
    Z3_OP_STORE = 0x300,
    Z3_OP_SELECT,
    Z3_OP_CONST_ARRAY,
    Z3_OP_ARRAY_MAP,
    Z3_OP_ARRAY_DEFAULT,
    Z3_OP_SET_UNION,
    Z3_OP_SET_INTERSECT,
    Z3_OP_SET_DIFFERENCE,
    Z3_OP_SET_COMPLEMENT,
    Z3_OP_SET_SUBSET,
    Z3_OP_AS_ARRAY,

    // Bit-vectors
    Z3_OP_BNUM = 0x400,
    Z3_OP_BIT1,
    Z3_OP_BIT0,
    Z3_OP_BNEG,
    Z3_OP_BADD,
    Z3_OP_BSUB,
    Z3_OP_BMUL,
    
    Z3_OP_BSDIV,
    Z3_OP_BUDIV,
    Z3_OP_BSREM,
    Z3_OP_BUREM,
    Z3_OP_BSMOD,

    // special functions to record the division by 0 cases
    // these are internal functions 
    Z3_OP_BSDIV0, 
    Z3_OP_BUDIV0,
    Z3_OP_BSREM0,
    Z3_OP_BUREM0,
    Z3_OP_BSMOD0,
    
    Z3_OP_ULEQ,
    Z3_OP_SLEQ,
    Z3_OP_UGEQ,
    Z3_OP_SGEQ,
    Z3_OP_ULT,
    Z3_OP_SLT,
    Z3_OP_UGT,
    Z3_OP_SGT,

    Z3_OP_BAND,
    Z3_OP_BOR,
    Z3_OP_BNOT,
    Z3_OP_BXOR,
    Z3_OP_BNAND,
    Z3_OP_BNOR,
    Z3_OP_BXNOR,

    Z3_OP_CONCAT,
    Z3_OP_SIGN_EXT,
    Z3_OP_ZERO_EXT,
    Z3_OP_EXTRACT,
    Z3_OP_REPEAT,

    Z3_OP_BREDOR,
    Z3_OP_BREDAND,
    Z3_OP_BCOMP,

    Z3_OP_BSHL,
    Z3_OP_BLSHR,
    Z3_OP_BASHR,
    Z3_OP_ROTATE_LEFT,
    Z3_OP_ROTATE_RIGHT,
    Z3_OP_EXT_ROTATE_LEFT,
    Z3_OP_EXT_ROTATE_RIGHT,

    Z3_OP_INT2BV,
    Z3_OP_BV2INT,
    Z3_OP_CARRY,
    Z3_OP_XOR3,
    
    // Proofs
    Z3_OP_PR_UNDEF = 0x500,     
    Z3_OP_PR_TRUE,
    Z3_OP_PR_ASSERTED, 
    Z3_OP_PR_GOAL, 
    Z3_OP_PR_MODUS_PONENS, 
    Z3_OP_PR_REFLEXIVITY, 
    Z3_OP_PR_SYMMETRY, 
    Z3_OP_PR_TRANSITIVITY, 
    Z3_OP_PR_TRANSITIVITY_STAR, 
    Z3_OP_PR_MONOTONICITY, 
    Z3_OP_PR_QUANT_INTRO,
    Z3_OP_PR_DISTRIBUTIVITY, 
    Z3_OP_PR_AND_ELIM, 
    Z3_OP_PR_NOT_OR_ELIM, 
    Z3_OP_PR_REWRITE, 
    Z3_OP_PR_REWRITE_STAR, 
    Z3_OP_PR_PULL_QUANT, 
    Z3_OP_PR_PULL_QUANT_STAR, 
    Z3_OP_PR_PUSH_QUANT, 
    Z3_OP_PR_ELIM_UNUSED_VARS, 
    Z3_OP_PR_DER, 
    Z3_OP_PR_QUANT_INST,
    Z3_OP_PR_HYPOTHESIS, 
    Z3_OP_PR_LEMMA, 
    Z3_OP_PR_UNIT_RESOLUTION, 
    Z3_OP_PR_IFF_TRUE, 
    Z3_OP_PR_IFF_FALSE, 
    Z3_OP_PR_COMMUTATIVITY, 
    Z3_OP_PR_DEF_AXIOM,
    Z3_OP_PR_DEF_INTRO, 
    Z3_OP_PR_APPLY_DEF, 
    Z3_OP_PR_IFF_OEQ, 
    Z3_OP_PR_NNF_POS, 
    Z3_OP_PR_NNF_NEG, 
    Z3_OP_PR_NNF_STAR, 
    Z3_OP_PR_CNF_STAR, 
    Z3_OP_PR_SKOLEMIZE,
    Z3_OP_PR_MODUS_PONENS_OEQ, 
    Z3_OP_PR_TH_LEMMA, 
    Z3_OP_PR_HYPER_RESOLVE,

    // Sequences
    Z3_OP_RA_STORE = 0x600,
    Z3_OP_RA_EMPTY,
    Z3_OP_RA_IS_EMPTY,
    Z3_OP_RA_JOIN,
    Z3_OP_RA_UNION,
    Z3_OP_RA_WIDEN,
    Z3_OP_RA_PROJECT,
    Z3_OP_RA_FILTER,
    Z3_OP_RA_NEGATION_FILTER,
    Z3_OP_RA_RENAME,
    Z3_OP_RA_COMPLEMENT,
    Z3_OP_RA_SELECT,
    Z3_OP_RA_CLONE,
    Z3_OP_FD_LT,

    // Auxiliary
    Z3_OP_LABEL = 0x700,
    Z3_OP_LABEL_LIT,

    // Datatypes
    Z3_OP_DT_CONSTRUCTOR=0x800,
    Z3_OP_DT_RECOGNISER,
    Z3_OP_DT_ACCESSOR,
    Z3_OP_DT_UPDATE_FIELD,

    // Pseudo Booleans
    Z3_OP_PB_AT_MOST=0x900,
    Z3_OP_PB_LE,
    Z3_OP_PB_GE,

    // Floating-Point Arithmetic
    Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN,
    Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY,
    Z3_OP_FPA_RM_TOWARD_POSITIVE,
    Z3_OP_FPA_RM_TOWARD_NEGATIVE,
    Z3_OP_FPA_RM_TOWARD_ZERO,

    Z3_OP_FPA_NUM,
    Z3_OP_FPA_PLUS_INF,
    Z3_OP_FPA_MINUS_INF,
    Z3_OP_FPA_NAN,
    Z3_OP_FPA_PLUS_ZERO,
    Z3_OP_FPA_MINUS_ZERO,

    Z3_OP_FPA_ADD,
    Z3_OP_FPA_SUB,
    Z3_OP_FPA_NEG,
    Z3_OP_FPA_MUL,
    Z3_OP_FPA_DIV,
    Z3_OP_FPA_REM,
    Z3_OP_FPA_ABS,
    Z3_OP_FPA_MIN,
    Z3_OP_FPA_MAX,
    Z3_OP_FPA_FMA,
    Z3_OP_FPA_SQRT,
    Z3_OP_FPA_ROUND_TO_INTEGRAL,

    Z3_OP_FPA_EQ,
    Z3_OP_FPA_LT,
    Z3_OP_FPA_GT,
    Z3_OP_FPA_LE,
    Z3_OP_FPA_GE,
    Z3_OP_FPA_IS_NAN,
    Z3_OP_FPA_IS_INF,
    Z3_OP_FPA_IS_ZERO,
    Z3_OP_FPA_IS_NORMAL,
    Z3_OP_FPA_IS_SUBNORMAL,
    Z3_OP_FPA_IS_NEGATIVE,
    Z3_OP_FPA_IS_POSITIVE,

    Z3_OP_FPA_FP,
    Z3_OP_FPA_TO_FP,
    Z3_OP_FPA_TO_FP_UNSIGNED,
    Z3_OP_FPA_TO_UBV,
    Z3_OP_FPA_TO_SBV,
    Z3_OP_FPA_TO_REAL,

    Z3_OP_FPA_TO_IEEE_BV,

    Z3_OP_UNINTERPRETED         
} Z3_decl_kind;

/**
   \mlonly {!param_kind} \endmlonly \conly \brief

   The different kinds of parameters that can be associated with parameter sets.
   (see #Z3_mk_params). 

    - Z3_PK_UINT integer parameters.
    - Z3_PK_BOOL boolean parameters.
    - Z3_PK_DOUBLE double parameters.
    - Z3_PK_SYMBOL symbol parameters.
    - Z3_PK_STRING string parameters.
    - Z3_PK_OTHER all internal parameter kinds which are not exposed in the API.
    - Z3_PK_INVALID invalid parameter.
*/
typedef enum {
    Z3_PK_UINT,
    Z3_PK_BOOL,
    Z3_PK_DOUBLE,
    Z3_PK_SYMBOL,
    Z3_PK_STRING,
    Z3_PK_OTHER,
    Z3_PK_INVALID
} Z3_param_kind;

#ifdef CorML3
/**
   \mlonly {!search_failure} \endmlonly \conly \brief
   The different kinds of search failure types.

   - Z3_NO_FAILURE:         The last search was successful
   - Z3_UNKNOWN:            Undocumented failure reason
   - Z3_TIMEOUT:            Timeout
   - Z3_MEMOUT_WATERMAK:    Search hit a memory high-watermak limit
   - Z3_CANCELED:           External cancel flag was set
   - Z3_NUM_CONFLICTS:      Maximum number of conflicts was reached
   - Z3_THEORY:             Theory is incomplete
   - Z3_QUANTIFIERS:        Logical context contains universal quantifiers
*/
typedef enum {
    Z3_NO_FAILURE,
    Z3_UNKNOWN,
    Z3_TIMEOUT,
    Z3_MEMOUT_WATERMARK,     
    Z3_CANCELED,      
    Z3_NUM_CONFLICTS, 
    Z3_THEORY,        
    Z3_QUANTIFIERS
} Z3_search_failure;
#endif

/**
   \mlonly {!ast_print_mode} \endmlonly \conly \brief
   Z3 pretty printing modes (See #Z3_set_ast_print_mode).

   - Z3_PRINT_SMTLIB_FULL:   Print AST nodes in SMTLIB verbose format.
   - Z3_PRINT_LOW_LEVEL:     Print AST nodes using a low-level format.
   - Z3_PRINT_SMTLIB_COMPLIANT: Print AST nodes in SMTLIB 1.x compliant format.
   - Z3_PRINT_SMTLIB2_COMPLIANT: Print AST nodes in SMTLIB 2.x compliant format.
*/
typedef enum {
    Z3_PRINT_SMTLIB_FULL,
    Z3_PRINT_LOW_LEVEL,
    Z3_PRINT_SMTLIB_COMPLIANT,
    Z3_PRINT_SMTLIB2_COMPLIANT
} Z3_ast_print_mode;


#ifdef CorML4
/**
   \mlonly {!error_code} \endmlonly \conly \brief
   Z3 error codes \conly (See #Z3_get_error_code).
   
   - Z3_OK:            No error.
   - Z3_SORT_ERROR:    User tried to build an invalid (type incorrect) AST.
   - Z3_IOB:           Index out of bounds.
   - Z3_INVALID_ARG:   Invalid argument was provided.
   - Z3_PARSER_ERROR:  An error occurred when parsing a string or file.
   - Z3_NO_PARSER:     Parser output is not available, that is, user didn't invoke #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.
   - Z3_INVALID_PATTERN: Invalid pattern was used to build a quantifier.
   - Z3_MEMOUT_FAIL:   A memory allocation failure was encountered.
   - Z3_FILE_ACCESS_ERRROR: A file could not be accessed.
   - Z3_INVALID_USAGE:   API call is invalid in the current state.
   - Z3_INTERNAL_FATAL: An error internal to Z3 occurred.
   - Z3_DEC_REF_ERROR: Trying to decrement the reference counter of an AST that was deleted or the reference counter was not initialized \mlonly.\endmlonly \conly with #Z3_inc_ref.
   - Z3_EXCEPTION:     Internal Z3 exception. Additional details can be retrieved using #Z3_get_error_msg.
*/
typedef enum
{
    Z3_OK,            
    Z3_SORT_ERROR,    
    Z3_IOB,           
    Z3_INVALID_ARG,   
    Z3_PARSER_ERROR,  
    Z3_NO_PARSER,
    Z3_INVALID_PATTERN,
    Z3_MEMOUT_FAIL,
    Z3_FILE_ACCESS_ERROR,
    Z3_INTERNAL_FATAL,
    Z3_INVALID_USAGE,
    Z3_DEC_REF_ERROR,
    Z3_EXCEPTION                
} Z3_error_code;

#endif

/**
  Definitions for update_api.py
  
  def_Type('CONFIG',           'Z3_config',           'Config')
  def_Type('CONTEXT',          'Z3_context',          'ContextObj')
  def_Type('AST',              'Z3_ast',              'Ast')
  def_Type('APP',              'Z3_app',              'Ast')
  def_Type('SORT',             'Z3_sort',             'Sort')
  def_Type('FUNC_DECL',        'Z3_func_decl',        'FuncDecl')
  def_Type('PATTERN',          'Z3_pattern',          'Pattern')
  def_Type('MODEL',            'Z3_model',            'Model')
  def_Type('LITERALS',         'Z3_literals',         'Literals')
  def_Type('CONSTRUCTOR',      'Z3_constructor',      'Constructor')
  def_Type('CONSTRUCTOR_LIST', 'Z3_constructor_list', 'ConstructorList')
  def_Type('THEORY',           'Z3_theory',           'ctypes.c_void_p')
  def_Type('THEORY_DATA',      'Z3_theory_data',      'ctypes.c_void_p')
  def_Type('SOLVER',           'Z3_solver',           'SolverObj')
  def_Type('GOAL',             'Z3_goal',             'GoalObj')
  def_Type('TACTIC',           'Z3_tactic',           'TacticObj')
  def_Type('PARAMS',           'Z3_params',           'Params')
  def_Type('PROBE',            'Z3_probe',            'ProbeObj')
  def_Type('STATS',            'Z3_stats',            'StatsObj')
  def_Type('AST_VECTOR',       'Z3_ast_vector',       'AstVectorObj')
  def_Type('AST_MAP',          'Z3_ast_map',          'AstMapObj')
  def_Type('APPLY_RESULT',     'Z3_apply_result',     'ApplyResultObj')
  def_Type('FUNC_INTERP',      'Z3_func_interp',      'FuncInterpObj')
  def_Type('FUNC_ENTRY',       'Z3_func_entry',       'FuncEntryObj')
  def_Type('FIXEDPOINT',       'Z3_fixedpoint',       'FixedpointObj')
  def_Type('OPTIMIZE',         'Z3_optimize',         'OptimizeObj')
  def_Type('PARAM_DESCRS',     'Z3_param_descrs',     'ParamDescrs')
  def_Type('RCF_NUM',          'Z3_rcf_num',          'RCFNumObj')
*/

#ifdef Conly
/**
   \brief Z3 custom error handler (See #Z3_set_error_handler).
*/
typedef void Z3_error_handler(Z3_context c, Z3_error_code e);

#endif
#ifdef ML4only
#include <error_handling.idl>
#endif


#ifdef CorML4
/**
   \mlonly {!goal_prec} \endmlonly \conly \brief
   A Goal is essentially a set of formulas. Z3 provide APIs for building strategies/tactics for solving and transforming Goals. Some of these transformations apply under/over approximations.
   
   - Z3_GOAL_PRECISE:    Approximations/Relaxations were not applied on the goal (sat and unsat answers were preserved).
   - Z3_GOAL_UNDER:      Goal is the product of a under-approximation (sat answers are preserved).
   - Z3_GOAL_OVER:       Goal is the product of an over-approximation (unsat answers are preserved).
   - Z3_GOAL_UNDER_OVER: Goal is garbage (it is the product of over- and under-approximations, sat and unsat answers are not preserved).
*/
typedef enum 
{
    Z3_GOAL_PRECISE,    
    Z3_GOAL_UNDER,      
    Z3_GOAL_OVER,       
    Z3_GOAL_UNDER_OVER  
} Z3_goal_prec;

#endif

/*@}*/

#ifndef CAMLIDL
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
#else
[pointer_default(ref)] interface Z3 {
#endif // CAMLIDL
    
#ifdef CorML3
    /**
        @name Configuration
    */

    /*@{*/
    /**
       \brief Set a global (or module) parameter.
       This setting is shared by all Z3 contexts.
       
       When a Z3 module is initialized it will use the value of these parameters
       when Z3_params objects are not provided.

       The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'. 
       The character '.' is a delimiter (more later).
       
       The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'.
       Thus, the following parameter names are considered equivalent: "pp.decimal-precision"  and "PP.DECIMAL_PRECISION".
       
       This function can be used to set parameters for a specific Z3 module.
       This can be done by using <module-name>.<parameter-name>.
       For example:
       Z3_global_param_set('pp.decimal', 'true')
       will set the parameter "decimal" in the module "pp" to true.

       def_API('Z3_global_param_set', VOID, (_in(STRING), _in(STRING)))
    */
    void Z3_API Z3_global_param_set(__in Z3_string param_id, __in Z3_string param_value);


    /**
       \brief Restore the value of all global (and module) parameters.
       This command will not affect already created objects (such as tactics and solvers).

       \sa Z3_global_param_set

       def_API('Z3_global_param_reset_all', VOID, ())
    */
    void Z3_API Z3_global_param_reset_all(void);
    
    /**
       \brief Get a global (or module) parameter.
       
       Returns \mlonly \c None \endmlonly \conly \c Z3_FALSE
       if the parameter value does not exist.

       \sa Z3_global_param_set

       \remark This function cannot be invoked simultaneously from different threads without synchronization.
       The result string stored in param_value is stored in shared location.

       def_API('Z3_global_param_get', BOOL, (_in(STRING), _out(STRING)))
    */
    Z3_bool_opt Z3_API Z3_global_param_get(__in Z3_string param_id, __out_opt Z3_string_ptr param_value);

    /*@}*/

    /**
        @name Create configuration
    */
    /*@{*/

    /**
       \brief Create a configuration object for the Z3 context object.

       Configurations are created in order to assign parameters prior to creating 
       contexts for Z3 interaction. For example, if the users wishes to use proof
       generation, then call:

       \ccode{Z3_set_param_value(cfg\, "proof"\, "true")}

       \mlonly \remark Consider using {!mk_context_x} instead of using
       explicit configuration objects. The function {!mk_context_x}
       receives an array of string pairs. This array represents the
       configuration options. \endmlonly

       \remark In previous versions of Z3, the \c Z3_config was used to store
       global and module configurations. Now, we should use \c Z3_global_param_set.

       The following parameters can be set:
        
          - proof  (Boolean)           Enable proof generation
          - debug_ref_count (Boolean)  Enable debug support for Z3_ast reference counting 
          - trace  (Boolean)           Tracing support for VCC
          - trace_file_name (String)   Trace out file for VCC traces
          - timeout (unsigned)         default timeout (in milliseconds) used for solvers
          - well_sorted_check          type checker
          - auto_config                use heuristics to automatically select solver and configure it
          - model                      model generation for solvers, this parameter can be overwritten when creating a solver
          - model_validate             validate models produced by solvers
          - unsat_core                 unsat-core generation for solvers, this parameter can be overwritten when creating a solver

       \sa Z3_set_param_value
       \sa Z3_del_config

       def_API('Z3_mk_config', CONFIG, ())
    */
    Z3_config Z3_API Z3_mk_config(void);

    /**
       \brief Delete the given configuration object.

       \sa Z3_mk_config

       def_API('Z3_del_config', VOID, (_in(CONFIG),))
    */
    void Z3_API Z3_del_config(__in Z3_config c);

    /**
       \brief Set a configuration parameter.

       The following parameters can be set for 

       \sa Z3_mk_config

       def_API('Z3_set_param_value', VOID, (_in(CONFIG), _in(STRING), _in(STRING)))
    */
    void Z3_API Z3_set_param_value(__in Z3_config c, __in Z3_string param_id, __in Z3_string param_value);
    
    /*@}*/
#endif

    /**
       @name Create context
    */
    /*@{*/

    /**
       \brief Create a context using the given configuration. 
    
       After a context is created, the configuration cannot be changed,
       although some parameters can be changed using #Z3_update_param_value.
       All main interaction with Z3 happens in the context of a \c Z3_context.

       In contrast to #Z3_mk_context_rc, the life time of Z3_ast objects
       are determined by the scope level of #Z3_push and #Z3_pop.
       In other words, a Z3_ast object remains valid until there is a 
       call to Z3_pop that takes the current scope below the level where 
       the object was created.

       Note that all other reference counted objects, including Z3_model,
       Z3_solver, Z3_func_interp have to be managed by the caller. 
       Their reference counts are not handled by the context.       

       \conly \sa Z3_del_context

       \conly \deprecated Use #Z3_mk_context_rc

       def_API('Z3_mk_context', CONTEXT, (_in(CONFIG),))
    */
#ifdef CorML3
    Z3_context Z3_API Z3_mk_context(__in Z3_config c);
#endif
#ifdef ML4only
#include <mlx_mk_context_x.idl>
#endif

#ifdef Conly
    /**
       \brief Create a context using the given configuration.
       This function is similar to #Z3_mk_context. However,
       in the context returned by this function, the user
       is responsible for managing Z3_ast reference counters.
       Managing reference counters is a burden and error-prone,
       but allows the user to use the memory more efficiently. 
       The user must invoke #Z3_inc_ref for any Z3_ast returned
       by Z3, and #Z3_dec_ref whenever the Z3_ast is not needed
       anymore. This idiom is similar to the one used in
       BDD (binary decision diagrams) packages such as CUDD.

       Remark: Z3_sort, Z3_func_decl, Z3_app, Z3_pattern are
       Z3_ast's.
 
       After a context is created, the configuration cannot be changed.
       All main interaction with Z3 happens in the context of a \c Z3_context.
       
       def_API('Z3_mk_context_rc', CONTEXT, (_in(CONFIG),))
    */
    Z3_context Z3_API Z3_mk_context_rc(__in Z3_config c);
#endif
    
#ifdef CorML3
    /**
       \brief Delete the given logical context.

       \sa Z3_mk_context

       def_API('Z3_del_context', VOID, (_in(CONTEXT),))
    */
    void Z3_API Z3_del_context(__in Z3_context c);
#endif
    
#ifdef Conly
    /**
       \brief Increment the reference counter of the given AST.
       The context \c c should have been created using #Z3_mk_context_rc.
       This function is a NOOP if \c c was created using #Z3_mk_context.

       def_API('Z3_inc_ref', VOID, (_in(CONTEXT), _in(AST)))
    */
    void Z3_API Z3_inc_ref(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Decrement the reference counter of the given AST.
       The context \c c should have been created using #Z3_mk_context_rc.
       This function is a NOOP if \c c was created using #Z3_mk_context.

       def_API('Z3_dec_ref', VOID, (_in(CONTEXT), _in(AST)))
    */
    void Z3_API Z3_dec_ref(__in Z3_context c, __in Z3_ast a);
#endif

    /**
       \brief Set a value of a context parameter.

       \sa Z3_global_param_set

       def_API('Z3_update_param_value', VOID, (_in(CONTEXT), _in(STRING), _in(STRING)))
    */
    void Z3_API Z3_update_param_value(__in Z3_context c, __in Z3_string param_id, __in Z3_string param_value);

#ifdef CorML4
    /**
       \brief Interrupt the execution of a Z3 procedure.
       This procedure can be used to interrupt: solvers, simplifiers and tactics.

       def_API('Z3_interrupt', VOID, (_in(CONTEXT),))
    */
    void Z3_API Z3_interrupt(__in Z3_context c);
#endif


    /*@}*/

#ifdef CorML4
    /**
       @name Parameters
    */
    /*@{*/
    
    /**
       \brief Create a Z3 (empty) parameter set.
       Starting at Z3 4.0, parameter sets are used to configure many components such as:
       simplifiers, tactics, solvers, etc.

       \conly \remark Reference counting must be used to manage parameter sets, even when the Z3_context was
       \conly created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_params', PARAMS, (_in(CONTEXT),))
    */
    Z3_params Z3_API Z3_mk_params(__in Z3_context c);
    
#ifdef Conly
    /**
       \brief Increment the reference counter of the given parameter set.

       def_API('Z3_params_inc_ref', VOID, (_in(CONTEXT), _in(PARAMS)))
    */
    void Z3_API Z3_params_inc_ref(__in Z3_context c, __in Z3_params p);

    /**
       \brief Decrement the reference counter of the given parameter set.

       def_API('Z3_params_dec_ref', VOID, (_in(CONTEXT), _in(PARAMS)))
    */
    void Z3_API Z3_params_dec_ref(__in Z3_context c, __in Z3_params p);
#endif

    /**
       \brief Add a Boolean parameter \c k with value \c v to the parameter set \c p.

       def_API('Z3_params_set_bool', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(BOOL)))
    */
    void Z3_API Z3_params_set_bool(__in Z3_context c, __in Z3_params p, __in Z3_symbol k, __in Z3_bool v);

    /**
       \brief Add a unsigned parameter \c k with value \c v to the parameter set \c p.
       
       def_API('Z3_params_set_uint', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(UINT)))
    */
    void Z3_API Z3_params_set_uint(__in Z3_context c, __in Z3_params p, __in Z3_symbol k, __in unsigned v);

    /**
       \brief Add a double parameter \c k with value \c v to the parameter set \c p.

       def_API('Z3_params_set_double', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(DOUBLE)))
    */
    void Z3_API Z3_params_set_double(__in Z3_context c, __in Z3_params p, __in Z3_symbol k, __in double v);

    /**
       \brief Add a symbol parameter \c k with value \c v to the parameter set \c p.

       def_API('Z3_params_set_symbol', VOID, (_in(CONTEXT), _in(PARAMS), _in(SYMBOL), _in(SYMBOL)))
    */
    void Z3_API Z3_params_set_symbol(__in Z3_context c, __in Z3_params p, __in Z3_symbol k, __in Z3_symbol v);
    
    /**
       \brief Convert a parameter set into a string. This function is mainly used for printing the
       contents of a parameter set.

       def_API('Z3_params_to_string', STRING, (_in(CONTEXT), _in(PARAMS)))
    */
    Z3_string Z3_API Z3_params_to_string(__in Z3_context c, __in Z3_params p);

    /**
       \brief Validate the parameter set \c p against the parameter description set \c d.

       The procedure invokes the error handler if \c p is invalid.

       def_API('Z3_params_validate', VOID, (_in(CONTEXT), _in(PARAMS), _in(PARAM_DESCRS)))
    */
    void Z3_API Z3_params_validate(__in Z3_context c, __in Z3_params p, __in Z3_param_descrs d);
    
#endif

    /*@}*/

#ifdef CorML4
    /**
       @name Parameter Descriptions
    */
    /*@{*/

#ifdef Conly
    /**
       \brief Increment the reference counter of the given parameter description set.

       def_API('Z3_param_descrs_inc_ref', VOID, (_in(CONTEXT), _in(PARAM_DESCRS)))
    */
    void Z3_API Z3_param_descrs_inc_ref(__in Z3_context c, __in Z3_param_descrs p);

    /**
       \brief Decrement the reference counter of the given parameter description set.

       def_API('Z3_param_descrs_dec_ref', VOID, (_in(CONTEXT), _in(PARAM_DESCRS)))
    */
    void Z3_API Z3_param_descrs_dec_ref(__in Z3_context c, __in Z3_param_descrs p);
#endif
    
    /**
       \brief Return the kind associated with the given parameter name \c n.

       def_API('Z3_param_descrs_get_kind', UINT, (_in(CONTEXT), _in(PARAM_DESCRS), _in(SYMBOL)))
    */
    Z3_param_kind Z3_API Z3_param_descrs_get_kind(__in Z3_context c, __in Z3_param_descrs p, __in Z3_symbol n);
    
    /**
       \brief Return the number of parameters in the given parameter description set.
       
       def_API('Z3_param_descrs_size', UINT, (_in(CONTEXT), _in(PARAM_DESCRS)))
    */
    unsigned Z3_API Z3_param_descrs_size(__in Z3_context c, __in Z3_param_descrs p);

    /**
       \brief Return the number of parameters in the given parameter description set.
       
       \pre i < Z3_param_descrs_size(c, p)

       def_API('Z3_param_descrs_get_name', SYMBOL, (_in(CONTEXT), _in(PARAM_DESCRS), _in(UINT)))
    */
    Z3_symbol Z3_API Z3_param_descrs_get_name(__in Z3_context c, __in Z3_param_descrs p, __in unsigned i);

    /**
       \brief Convert a parameter description set into a string. This function is mainly used for printing the
       contents of a parameter description set.

       def_API('Z3_param_descrs_to_string', STRING, (_in(CONTEXT), _in(PARAM_DESCRS)))
    */
    Z3_string Z3_API Z3_param_descrs_to_string(__in Z3_context c, __in Z3_param_descrs p);

    /*@}*/
#endif

    /**
       @name Symbols
    */
    /*@{*/

#ifdef ML4only
#include <mlx_mk_symbol.idl>
#endif

    /**
       \mlonly {4 {L Redundant low-level API}} \endmlonly
    */

    /**
       \brief Create a Z3 symbol using an integer.

       Symbols are used to name several term and type constructors.

       NB. Not all integers can be passed to this function.
       The legal range of unsigned integers is 0 to 2^30-1.

       \sa Z3_mk_string_symbol

       def_API('Z3_mk_int_symbol', SYMBOL, (_in(CONTEXT), _in(INT)))
    */
    Z3_symbol Z3_API Z3_mk_int_symbol(__in Z3_context c, __in int i);

    /**
       \brief Create a Z3 symbol using a C string.

       Symbols are used to name several term and type constructors.

       \sa Z3_mk_int_symbol

       def_API('Z3_mk_string_symbol', SYMBOL, (_in(CONTEXT), _in(STRING)))
    */
    Z3_symbol Z3_API Z3_mk_string_symbol(__in Z3_context c, __in Z3_string s);

    /*@}*/
    
    /**
       @name Sorts
    */
    /*@{*/

#ifdef ML4only
#include <mlx_mk_sort.idl>
#endif

    /**
       \mlonly {4 {L Redundant low-level API}} \endmlonly
    */

    /**
       \brief Create a free (uninterpreted) type using the given name (symbol).
       
       Two free types are considered the same iff the have the same name.

       def_API('Z3_mk_uninterpreted_sort', SORT, (_in(CONTEXT), _in(SYMBOL)))
    */
    Z3_sort Z3_API Z3_mk_uninterpreted_sort(__in Z3_context c, __in Z3_symbol s);

    /**
       \brief Create the Boolean type. 

       This type is used to create propositional variables and predicates.

       def_API('Z3_mk_bool_sort', SORT, (_in(CONTEXT), ))
    */
    Z3_sort Z3_API Z3_mk_bool_sort(__in Z3_context c);
    
    /**
       \brief Create the integer type.

       This type is not the int type found in programming languages.
       A machine integer can be represented using bit-vectors. The function
       #Z3_mk_bv_sort creates a bit-vector type.

       \sa Z3_mk_bv_sort

       def_API('Z3_mk_int_sort', SORT, (_in(CONTEXT), ))
    */
    Z3_sort Z3_API Z3_mk_int_sort(__in Z3_context c);
    
    /**
       \brief Create the real type. 

       Note that this type is not a floating point number.

       def_API('Z3_mk_real_sort', SORT, (_in(CONTEXT), ))
    */
    Z3_sort Z3_API Z3_mk_real_sort(__in Z3_context c);

    /**
       \brief Create a bit-vector type of the given size.
    
       This type can also be seen as a machine integer.

       \remark The size of the bitvector type must be greater than zero.

       def_API('Z3_mk_bv_sort', SORT, (_in(CONTEXT), _in(UINT)))
    */
    Z3_sort Z3_API Z3_mk_bv_sort(__in Z3_context c, __in unsigned sz);

    /**
       \brief Create a named finite domain sort.

       To create constants that belong to the finite domain, 
       use the APIs for creating numerals and pass a numeric
       constant together with the sort returned by this call.
       The numeric constant should be between 0 and the less 
       than the size of the domain.

       \sa Z3_get_finite_domain_sort_size

       def_API('Z3_mk_finite_domain_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT64)))
    */
    Z3_sort Z3_API Z3_mk_finite_domain_sort(__in Z3_context c, __in Z3_symbol name, __in unsigned __int64 size);

    /**
       \brief Create an array type. 
       
       We usually represent the array type as: <tt>[domain -> range]</tt>.
       Arrays are usually used to model the heap/memory in software verification.

       \sa Z3_mk_select
       \sa Z3_mk_store

       def_API('Z3_mk_array_sort', SORT, (_in(CONTEXT), _in(SORT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_mk_array_sort(__in Z3_context c, __in Z3_sort domain, __in Z3_sort range);

    /**
       \brief Create a tuple type.
       
       \mlonly [mk_tuple_sort c name field_names field_sorts] creates a tuple with a constructor named [name],
       a [n] fields, where [n] is the size of the arrays [field_names] and [field_sorts].
       \endmlonly

       \conly A tuple with \c n fields has a constructor and \c n projections.
       \conly This function will also declare the constructor and projection functions.

       \param c logical context
       \param mk_tuple_name name of the constructor function associated with the tuple type.
       \param num_fields number of fields in the tuple type.
       \param field_names name of the projection functions.
       \param field_sorts type of the tuple fields.
       \param mk_tuple_decl output parameter that will contain the constructor declaration.
       \param proj_decl output parameter that will contain the projection function declarations. This field must be a buffer of size \c num_fields allocated by the user.

       def_API('Z3_mk_tuple_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _out(FUNC_DECL), _out_array(2, FUNC_DECL)))
    */
    Z3_sort Z3_API Z3_mk_tuple_sort(__in Z3_context c, 
                                        __in Z3_symbol mk_tuple_name, 
                                        __in unsigned num_fields, 
                                        __in_ecount(num_fields) Z3_symbol const field_names[],
                                        __in_ecount(num_fields) Z3_sort const field_sorts[],
                                        __out Z3_func_decl * mk_tuple_decl,
                                        __out_ecount(num_fields)  Z3_func_decl proj_decl[]);

    /**
       \brief Create a enumeration sort.
       
       \mlonly [mk_enumeration_sort c enums] creates an enumeration sort with enumeration names [enums], 
               it also returns [n] predicates, where [n] is the number of [enums] corresponding
               to testing whether an element is one of the enumerants.
       \endmlonly

       \conly An enumeration sort with \c n elements.
       \conly This function will also declare the functions corresponding to the enumerations.
       
       \param c logical context
       \param name name of the enumeration sort.
       \param n number of elemenets in enumeration sort.
       \param enum_names names of the enumerated elements.
       \param enum_consts constants corresponding to the enumerated elements.
       \param enum_testers predicates testing if terms of the enumeration sort correspond to an enumeration.

       For example, if this function is called with three symbols A, B, C and the name S, then 
       \c s is a sort whose name is S, and the function returns three terms corresponding to A, B, C in 
       \c enum_consts. The array \c enum_testers has three predicates of type <tt>(s -> Bool)</tt>.
       The first predicate (corresponding to A) is true when applied to A, and false otherwise.
       Similarly for the other predicates.

       def_API('Z3_mk_enumeration_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SYMBOL), _out_array(2, FUNC_DECL), _out_array(2, FUNC_DECL)))
    */
    Z3_sort Z3_API Z3_mk_enumeration_sort(__in Z3_context c, 
                                          __in Z3_symbol name,
                                          __in unsigned n,
                                          __in_ecount(n)  Z3_symbol  const enum_names[],
                                          __out_ecount(n) Z3_func_decl enum_consts[],
                                          __out_ecount(n) Z3_func_decl enum_testers[]);

    /**
       \brief Create a list sort
       
       \mlonly [mk_list_sort c name elem_sort] creates a list sort of [name], over elements of sort [elem_sort].
       \endmlonly

       \conly A list sort over \c elem_sort 
       \conly This function declares the corresponding constructors and testers for lists.

       \param c logical context
       \param name name of the list sort.
       \param elem_sort sort of list elements.
       \param nil_decl declaration for the empty list.
       \param is_nil_decl test for the empty list.
       \param cons_decl declaration for a cons cell.
       \param is_cons_decl cons cell test.
       \param head_decl list head.
       \param tail_decl list tail.

       def_API('Z3_mk_list_sort', SORT, (_in(CONTEXT), _in(SYMBOL), _in(SORT), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL), _out(FUNC_DECL)))
    */
    Z3_sort Z3_API Z3_mk_list_sort(__in Z3_context c,
                                   __in Z3_symbol name,
                                   __in Z3_sort   elem_sort,
                                   __out Z3_func_decl* nil_decl,
                                   __out Z3_func_decl* is_nil_decl,
                                   __out Z3_func_decl* cons_decl,
                                   __out Z3_func_decl* is_cons_decl,
                                   __out Z3_func_decl* head_decl,
                                   __out Z3_func_decl* tail_decl
                                   );

BEGIN_MLAPI_EXCLUDE
    /**
       \brief Create a constructor.
       
       \param c logical context.
       \param name constructor name.
       \param recognizer name of recognizer function.
       \param num_fields number of fields in constructor.
       \param field_names names of the constructor fields.
       \param sorts field sorts, \mlonly [None] \endmlonly \conly 0
                    if the field sort refers to a recursive sort.
       \param sort_refs reference to datatype sort that is an argument to the constructor; if the corresponding
                        sort reference is \mlonly [None], \endmlonly \conly 0,
                        then the value in sort_refs should be an index referring to 
                        one of the recursive datatypes that is declared.                        

       def_API('Z3_mk_constructor', CONSTRUCTOR, (_in(CONTEXT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(3, SYMBOL), _in_array(3, SORT), _in_array(3, UINT)))
    */
    Z3_constructor Z3_API Z3_mk_constructor(__in Z3_context c,
                                            __in Z3_symbol name,
                                            __in Z3_symbol recognizer,
                                            __in unsigned num_fields,
                                            __in_ecount(num_fields) Z3_symbol const field_names[],
                                            __in_ecount(num_fields) Z3_sort_opt const sorts[],
                                            __in_ecount(num_fields) unsigned sort_refs[]
                                            );
    
    /**
       \brief Reclaim memory allocated to constructor.

       \param c logical context.
       \param constr constructor.

       def_API('Z3_del_constructor', VOID, (_in(CONTEXT), _in(CONSTRUCTOR)))
    */
    void Z3_API Z3_del_constructor(__in Z3_context c, __in Z3_constructor constr);

    /**
       \brief Create datatype, such as lists, trees, records, enumerations or unions of records. 
       The datatype may be recursive. Return the datatype sort.

       \param c logical context.
	   \param name name of datatype.
       \param num_constructors number of constructors passed in.
       \param constructors array of constructor containers.

       def_API('Z3_mk_datatype', SORT, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _inout_array(2, CONSTRUCTOR)))
    */
    Z3_sort Z3_API Z3_mk_datatype(__in Z3_context c,
                                  __in Z3_symbol name,
                                  __in unsigned num_constructors,
                                  __inout_ecount(num_constructors) Z3_constructor constructors[]);


    /**
       \brief Create list of constructors.

       \param c logical context.
       \param num_constructors number of constructors in list.
       \param constructors list of constructors.

       def_API('Z3_mk_constructor_list', CONSTRUCTOR_LIST, (_in(CONTEXT), _in(UINT), _in_array(1, CONSTRUCTOR)))
    */
    Z3_constructor_list Z3_API Z3_mk_constructor_list(__in Z3_context c,
                                                      __in unsigned num_constructors,
                                                      __in_ecount(num_constructors) Z3_constructor const constructors[]);

    /**
       \brief Reclaim memory allocated for constructor list.

       Each constructor inside the constructor list must be independently reclaimed using #Z3_del_constructor.

       \param c logical context.
       \param clist constructor list container.

       def_API('Z3_del_constructor_list', VOID, (_in(CONTEXT), _in(CONSTRUCTOR_LIST)))
    */
    void Z3_API Z3_del_constructor_list(__in Z3_context c, __in Z3_constructor_list clist);
                                        
    /**
       \brief Create mutually recursive datatypes.

       \param c logical context.
       \param num_sorts number of datatype sorts.
       \param sort_names names of datatype sorts.
       \param sorts array of datatype sorts.
       \param constructor_lists list of constructors, one list per sort.

       def_API('Z3_mk_datatypes', VOID, (_in(CONTEXT), _in(UINT), _in_array(1, SYMBOL), _out_array(1, SORT), _inout_array(1, CONSTRUCTOR_LIST)))
    */
    void Z3_API Z3_mk_datatypes(__in Z3_context c,
                                __in unsigned num_sorts,
                                __in_ecount(num_sorts) Z3_symbol const sort_names[],
                                __out_ecount(num_sorts) Z3_sort sorts[],
                                __inout_ecount(num_sorts) Z3_constructor_list constructor_lists[]);

    /**
       \brief Query constructor for declared functions. 
      
       \param c logical context.
       \param constr constructor container. The container must have been passed in to a #Z3_mk_datatype call.
       \param num_fields number of accessor fields in the constructor.
       \param constructor constructor function declaration.
       \param tester constructor test function declaration.
       \param accessors array of accessor function declarations.

       def_API('Z3_query_constructor', VOID, (_in(CONTEXT), _in(CONSTRUCTOR), _in(UINT), _out(FUNC_DECL), _out(FUNC_DECL), _out_array(2, FUNC_DECL)))
    */
    void Z3_API Z3_query_constructor(__in Z3_context c,
                                     __in Z3_constructor constr,
                                     __in unsigned num_fields,
                                     __out Z3_func_decl* constructor,
                                     __out Z3_func_decl* tester,
                                     __out_ecount(num_fields) Z3_func_decl accessors[]);
END_MLAPI_EXCLUDE

    /*@}*/

    /**
       @name Constants and Applications
     */
    /*@{*/

    /**
       \brief Declare a constant or function.

       \mlonly [mk_func_decl c n d r] creates a function with name [n], domain [d], and range [r].
       The arity of the function is the size of the array [d]. \endmlonly

       \param c logical context.
       \param s name of the constant or function.
       \param domain_size number of arguments. It is 0 when declaring a constant.
       \param domain array containing the sort of each argument. The array must contain domain_size elements. It is 0 when declaring a constant.
       \param range sort of the constant or the return sort of the function.

       After declaring a constant or function, the function
       #Z3_mk_app can be used to create a constant or function
       application.

       \sa Z3_mk_app

       def_API('Z3_mk_func_decl', FUNC_DECL, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SORT), _in(SORT)))
    */
    Z3_func_decl Z3_API Z3_mk_func_decl(__in Z3_context c, __in Z3_symbol s,
                                        __in unsigned domain_size, __in_ecount(domain_size) Z3_sort const domain[],
                                        __in Z3_sort range);

    
    /**
       \brief Create a constant or function application.

       \sa Z3_mk_func_decl

       def_API('Z3_mk_app', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_mk_app(
        __in Z3_context c, 
        __in Z3_func_decl d,
        __in unsigned num_args, 
        __in_ecount(num_args) Z3_ast const args[]);

    /**
       \brief Declare and create a constant.
       
       \conly This function is a shorthand for:
       \conly \code
       \conly Z3_func_decl d = Z3_mk_func_decl(c, s, 0, 0, ty);
       \conly Z3_ast n            = Z3_mk_app(c, d, 0, 0);
       \conly \endcode
       
       \mlonly [mk_const c s t] is a shorthand for [mk_app c (mk_func_decl c s [||] t) [||]] \endmlonly

       \sa Z3_mk_func_decl
       \sa Z3_mk_app

       def_API('Z3_mk_const', AST, (_in(CONTEXT), _in(SYMBOL), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_const(__in Z3_context c, __in Z3_symbol s, __in Z3_sort ty);

    /**
       \brief Declare a fresh constant or function.

       Z3 will generate an unique name for this function declaration.
       \conly If prefix is different from \c NULL, then the name generate by Z3 will start with \c prefix.
       
       \conly \remark If \c prefix is \c NULL, then it is assumed to be the empty string.

       \sa Z3_mk_func_decl

       def_API('Z3_mk_fresh_func_decl', FUNC_DECL, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SORT), _in(SORT)))
    */
    Z3_func_decl Z3_API Z3_mk_fresh_func_decl(__in Z3_context c, __in Z3_string prefix,
                                                   __in unsigned domain_size, __in_ecount(domain_size) Z3_sort const domain[],
                                                   __in Z3_sort range);
    
    /**
       \brief Declare and create a fresh constant.
       
       \conly This function is a shorthand for:
       \conly \code Z3_func_decl d = Z3_mk_fresh_func_decl(c, prefix, 0, 0, ty); Z3_ast n = Z3_mk_app(c, d, 0, 0); \endcode

       \mlonly [mk_fresh_const c p t] is a shorthand for [mk_app c (mk_fresh_func_decl c p [||] t) [||]]. \endmlonly

       \conly \remark If \c prefix is \c NULL, then it is assumed to be the empty string.
       
       \sa Z3_mk_func_decl
       \sa Z3_mk_app
       
       def_API('Z3_mk_fresh_const', AST, (_in(CONTEXT), _in(STRING), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_fresh_const(__in Z3_context c, __in Z3_string prefix, __in Z3_sort ty);
    /*@}*/

    /**
       @name Propositional Logic and Equality
    */
    /*@{*/
    /**
        \brief Create an AST node representing \c true.
        
        def_API('Z3_mk_true', AST, (_in(CONTEXT), ))
    */
    Z3_ast Z3_API Z3_mk_true(__in Z3_context c);

    /**
        \brief Create an AST node representing \c false.

        def_API('Z3_mk_false', AST, (_in(CONTEXT), ))
    */
    Z3_ast Z3_API Z3_mk_false(__in Z3_context c);
    
    /**
        \brief \mlh mk_eq c l r \endmlh
        Create an AST node representing <tt>l = r</tt>.
        
        The nodes \c l and \c r must have the same type. 

        def_API('Z3_mk_eq', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_eq(__in Z3_context c, __in Z3_ast l, __in Z3_ast r);
    
    /**
       \conly \brief Create an AST node representing <tt>distinct(args[0], ..., args[num_args-1])</tt>.
       \mlonly \brief \[ [mk_distinct c [| t_1; ...; t_n |]] \] Create an AST
       node represeting a distinct construct. It is used for declaring
       the arguments t_i pairwise distinct. \endmlonly

       The \c distinct construct is used for declaring the arguments pairwise distinct.
       That is, <tt>Forall 0 <= i < j < num_args. not args[i] = args[j]</tt>.
       
       All arguments must have the same sort.

       \remark The number of arguments of a distinct construct must be greater than one.

       def_API('Z3_mk_distinct', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_distinct(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);

    /**
        \brief \mlh mk_not c a \endmlh 
        Create an AST node representing <tt>not(a)</tt>.
        
        The node \c a must have Boolean sort.

        def_API('Z3_mk_not', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_not(__in Z3_context c, __in Z3_ast a);
        
    /**
       \brief \mlh mk_ite c t1 t2 t2 \endmlh 
       Create an AST node representing an if-then-else: <tt>ite(t1, t2,
       t3)</tt>.

       The node \c t1 must have Boolean sort, \c t2 and \c t3 must have the same sort.
       The sort of the new node is equal to the sort of \c t2 and \c t3.

       def_API('Z3_mk_ite', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_ite(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2, __in Z3_ast t3);

    /**
       \brief \mlh mk_iff c t1 t2 \endmlh
       Create an AST node representing <tt>t1 iff t2</tt>.

       The nodes \c t1 and \c t2 must have Boolean sort.

       def_API('Z3_mk_iff', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_iff(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_implies c t1 t2 \endmlh
       Create an AST node representing <tt>t1 implies t2</tt>.

       The nodes \c t1 and \c t2 must have Boolean sort.

       def_API('Z3_mk_implies', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_implies(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
    
    /**
       \brief \mlh mk_xor c t1 t2 \endmlh
       Create an AST node representing <tt>t1 xor t2</tt>.

       The nodes \c t1 and \c t2 must have Boolean sort.

       def_API('Z3_mk_xor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_xor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
    
    /**
       \conly \brief Create an AST node representing <tt>args[0] and ... and args[num_args-1]</tt>.
       \mlonly \brief \[ [mk_and c [| t_1; ...; t_n |]] \] Create the conjunction: {e t_1 and ... and t_n}. \endmlonly

       \conly The array \c args must have \c num_args elements. 
       All arguments must have Boolean sort.
       
       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_and', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_and(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
    
    /**
       \conly \brief Create an AST node representing <tt>args[0] or ... or args[num_args-1]</tt>.
       \mlonly \brief \[ [mk_or c [| t_1; ...; t_n |]] \] Create the disjunction: {e t_1 or ... or t_n}. \endmlonly

       \conly The array \c args must have \c num_args elements. 
       All arguments must have Boolean sort.

       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_or', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_or(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
    /*@}*/

    /**
       @name Arithmetic: Integers and Reals
    */
    /*@{*/
    /**
       \conly \brief Create an AST node representing <tt>args[0] + ... + args[num_args-1]</tt>.
       \mlonly \brief \[ [mk_add c [| t_1; ...; t_n |]] \] Create the term: {e t_1 + ... + t_n}. \endmlonly

       \conly The array \c args must have \c num_args elements. 
       All arguments must have int or real sort.

       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_add', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_add(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
    
    /**
       \conly \brief Create an AST node representing <tt>args[0] * ... * args[num_args-1]</tt>.
       \mlonly \brief \[ [mk_mul c [| t_1; ...; t_n |]] \] Create the term: {e t_1 * ... * t_n}. \endmlonly

       \conly The array \c args must have \c num_args elements. 
       All arguments must have int or real sort.
       
       \remark Z3 has limited support for non-linear arithmetic.
       \remark The number of arguments must be greater than zero.

       def_API('Z3_mk_mul', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_mul(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);
    
    /**
       \conly \brief Create an AST node representing <tt>args[0] - ... - args[num_args - 1]</tt>.
       \mlonly \brief \[ [mk_sub c [| t_1; ...; t_n |]] \] Create the term: {e t_1 - ... - t_n}. \endmlonly

       \conly The array \c args must have \c num_args elements. 
       All arguments must have int or real sort.

       \remark The number of arguments must be greater than zero.
       
       def_API('Z3_mk_sub', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_sub(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);

    /**
       \conly \brief Create an AST node representing <tt>-arg</tt>.
       \mlonly \brief \[ [mk_unary_minus c arg] \] Create the term: {e - arg}. \endmlonly

       The arguments must have int or real type.

       def_API('Z3_mk_unary_minus', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_unary_minus(__in Z3_context c, __in Z3_ast arg);

    /**
       \conly \brief Create an AST node representing <tt>arg1 div arg2</tt>.
       \mlonly \brief \[ [mk_div c t_1 t_2] \] Create the term: {e t_1 div t_2}. \endmlonly

       The arguments must either both have int type or both have real type.
       If the arguments have int type, then the result type is an int type, otherwise the
       the result type is real.

       def_API('Z3_mk_div', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_div(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);

    /**
       \conly \brief Create an AST node representing <tt>arg1 mod arg2</tt>.
       \mlonly \brief \[ [mk_mod c t_1 t_2] \] Create the term: {e t_1 mod t_2}. \endmlonly

       The arguments must have int type.

       def_API('Z3_mk_mod', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_mod(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);

    /**
       \conly \brief Create an AST node representing <tt>arg1 rem arg2</tt>.
       \mlonly \brief \[ [mk_rem c t_1 t_2] \] Create the term: {e t_1 rem t_2}. \endmlonly

       The arguments must have int type.

       def_API('Z3_mk_rem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_rem(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);

    /**
       \conly \brief Create an AST node representing <tt>arg1^arg2</tt>.

       The arguments must have int or real type.

       def_API('Z3_mk_power', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_power(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);

    /**
        \brief \mlh mk_lt c t1 t2 \endmlh 
        Create less than.

        The nodes \c t1 and \c t2 must have the same sort, and must be int or real.

        def_API('Z3_mk_lt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_lt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
        \brief \mlh mk_le c t1 t2 \endmlh
        Create less than or equal to.
        
        The nodes \c t1 and \c t2 must have the same sort, and must be int or real.

        def_API('Z3_mk_le', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_le(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
        \brief \mlh mk_gt c t1 t2 \endmlh
        Create greater than.
        
        The nodes \c t1 and \c t2 must have the same sort, and must be int or real.

        def_API('Z3_mk_gt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_gt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
        \brief \mlh mk_ge c t1 t2 \endmlh
        Create greater than or equal to.
        
        The nodes \c t1 and \c t2 must have the same sort, and must be int or real.

        def_API('Z3_mk_ge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_ge(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
        \brief \mlh mk_int2real c t1 \endmlh
        Coerce an integer to a real.

        There is also a converse operation exposed.
        It follows the semantics prescribed by the SMT-LIB standard.

        You can take the floor of a real by 
        creating an auxiliary integer constant \c k and
        and asserting <tt> mk_int2real(k) <= t1 < mk_int2real(k)+1</tt>.
        
        The node \c t1 must have sort integer.

        \sa Z3_mk_real2int
        \sa Z3_mk_is_int

        def_API('Z3_mk_int2real', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_int2real(__in Z3_context c, __in Z3_ast t1);

    /**
        \brief \mlh mk_real2int c t1 \endmlh
        Coerce a real to an integer.

        The semantics of this function follows the SMT-LIB standard
        for the function to_int

        \sa Z3_mk_int2real
        \sa Z3_mk_is_int
        
        def_API('Z3_mk_real2int', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_real2int(__in Z3_context c, __in Z3_ast t1);

    /**
        \brief \mlh mk_is_int c t1 \endmlh
        Check if a real number is an integer.

        \sa Z3_mk_int2real
        \sa Z3_mk_real2int
        
        def_API('Z3_mk_is_int', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_is_int(__in Z3_context c, __in Z3_ast t1);
    /*@}*/

    /**
       @name Bit-vectors
    */
    /*@{*/
    /**
       \brief \mlh mk_bvnot c t1 \endmlh
       Bitwise negation.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_bvnot', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvnot(__in Z3_context c, __in Z3_ast t1);

    /**
       \brief \mlh mk_bvredand c t1 \endmlh
       Take conjunction of bits in vector, return vector of length 1.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_bvredand', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvredand(__in Z3_context c, __in Z3_ast t1);

    /**
       \brief \mlh mk_bvredor c t1 \endmlh
       Take disjunction of bits in vector, return vector of length 1.

       The node \c t1 must have a bit-vector sort.
       
       def_API('Z3_mk_bvredor', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvredor(__in Z3_context c, __in Z3_ast t1);

    /**
       \brief \mlh mk_bvand c t1 t2 \endmlh
       Bitwise and.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.
       
       def_API('Z3_mk_bvand', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvand(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvor c t1 t2 \endmlh
       Bitwise or.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvxor c t1 t2 \endmlh
       Bitwise exclusive-or.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.
       
       def_API('Z3_mk_bvxor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvxor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvnand c t1 t2 \endmlh
       Bitwise nand. 

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvnand', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvnand(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvnor c t1 t2 \endmlh
       Bitwise nor. 

       The nodes \c t1 and \c t2 must have the same bit-vector sort.
    
       def_API('Z3_mk_bvnor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvnor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvxnor c t1 t2 \endmlh
       Bitwise xnor. 
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvxnor', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvxnor(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvneg c t1 \endmlh
       Standard two's complement unary minus. 

       The node \c t1 must have bit-vector sort.

       def_API('Z3_mk_bvneg', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvneg(__in Z3_context c, __in Z3_ast t1);
    
    /**
        \brief \mlh mk_bvadd c t1 t2 \endmlh
        Standard two's complement addition.
        
        The nodes \c t1 and \c t2 must have the same bit-vector sort.

        def_API('Z3_mk_bvadd', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvadd(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
        \brief \mlh mk_bvsub c t1 t2 \endmlh
        Standard two's complement subtraction.
        
        The nodes \c t1 and \c t2 must have the same bit-vector sort.

        def_API('Z3_mk_bvsub', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsub(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
    
    /**
        \brief \mlh mk_bvmul c t1 t2 \endmlh
        Standard two's complement multiplication.
        
        The nodes \c t1 and \c t2 must have the same bit-vector sort.

        def_API('Z3_mk_bvmul', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvmul(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
        \brief \mlh mk_bvudiv c t1 t2 \endmlh
        Unsigned division. 

        It is defined as the \c floor of <tt>t1/t2</tt> if \c t2 is
        different from zero. If <tt>t2</tt> is zero, then the result
        is undefined.
        
        The nodes \c t1 and \c t2 must have the same bit-vector sort.
        
        def_API('Z3_mk_bvudiv', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvudiv(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
        \brief \mlh mk_bvsdiv c t1 t2 \endmlh
        Two's complement signed division. 

        It is defined in the following way:

        - The \c floor of <tt>t1/t2</tt> if \c t2 is different from zero, and <tt>t1*t2 >= 0</tt>.

        - The \c ceiling of <tt>t1/t2</tt> if \c t2 is different from zero, and <tt>t1*t2 < 0</tt>.
        
        If <tt>t2</tt> is zero, then the result is undefined.
        
        The nodes \c t1 and \c t2 must have the same bit-vector sort.
    
        def_API('Z3_mk_bvsdiv', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsdiv(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvurem c t1 t2 \endmlh
       Unsigned remainder.

       It is defined as <tt>t1 - (t1 /u t2) * t2</tt>, where <tt>/u</tt> represents unsigned division.
       
       If <tt>t2</tt> is zero, then the result is undefined.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvurem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvurem(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvsrem c t1 t2 \endmlh
       Two's complement signed remainder (sign follows dividend).

       It is defined as <tt>t1 - (t1 /s t2) * t2</tt>, where <tt>/s</tt> represents signed division.
       The most significant bit (sign) of the result is equal to the most significant bit of \c t1.

       If <tt>t2</tt> is zero, then the result is undefined.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       \sa Z3_mk_bvsmod

       def_API('Z3_mk_bvsrem', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsrem(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvsmod c t1 t2 \endmlh
       Two's complement signed remainder (sign follows divisor).
       
       If <tt>t2</tt> is zero, then the result is undefined.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       \sa Z3_mk_bvsrem

       def_API('Z3_mk_bvsmod', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsmod(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvult c t1 t2 \endmlh
       Unsigned less than.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.
       
       def_API('Z3_mk_bvult', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvult(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
    
    /**
       \brief \mlh mk_bvslt c t1 t2 \endmlh
       Two's complement signed less than.
       
       It abbreviates:
       \code
      (or (and (= (extract[|m-1|:|m-1|] t1) bit1)
               (= (extract[|m-1|:|m-1|] t2) bit0))
          (and (= (extract[|m-1|:|m-1|] t1) (extract[|m-1|:|m-1|] t2))
               (bvult t1 t2)))
       \endcode

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvslt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvslt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvule c t1 t2 \endmlh
       Unsigned less than or equal to.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvule', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvule(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvsle c t1 t2 \endmlh
       Two's complement signed less than or equal to.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.
    
       def_API('Z3_mk_bvsle', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsle(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvuge c t1 t2 \endmlh
       Unsigned greater than or equal to.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.
    
       def_API('Z3_mk_bvuge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvuge(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvsge c t1 t2 \endmlh
       Two's complement signed greater than or equal to.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.
    
       def_API('Z3_mk_bvsge', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsge(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvugt c t1 t2 \endmlh
       Unsigned greater than.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvugt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvugt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvsgt c t1 t2 \endmlh
       Two's complement signed greater than.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.
       
       def_API('Z3_mk_bvsgt', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsgt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_concat c t1 t2 \endmlh
       Concatenate the given bit-vectors.
       
       The nodes \c t1 and \c t2 must have (possibly different) bit-vector sorts

       The result is a bit-vector of size <tt>n1+n2</tt>, where \c n1 (\c n2) is the size
       of \c t1 (\c t2).

       def_API('Z3_mk_concat', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_concat(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
    
    /**
       \brief \mlh mk_extract c high low t1 \endmlh
       Extract the bits \c high down to \c low from a bitvector of
       size \c m to yield a new bitvector of size \c n, where <tt>n =
       high - low + 1</tt>.

       The node \c t1 must have a bit-vector sort.

       def_API('Z3_mk_extract', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_extract(__in Z3_context c, __in unsigned high, __in unsigned low, __in Z3_ast t1);

    /**
       \brief \mlh mk_sign_ext c i t1 \endmlh
       Sign-extend of the given bit-vector to the (signed) equivalent bitvector of
       size <tt>m+i</tt>, where \c m is the size of the given
       bit-vector.

       The node \c t1 must have a bit-vector sort.
       
       def_API('Z3_mk_sign_ext', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_sign_ext(__in Z3_context c, __in unsigned i, __in Z3_ast t1);

    /**
       \brief \mlh mk_zero_ext c i t1 \endmlh
       Extend the given bit-vector with zeros to the (unsigned) equivalent
       bitvector of size <tt>m+i</tt>, where \c m is the size of the
       given bit-vector.
       
       The node \c t1 must have a bit-vector sort. 

       def_API('Z3_mk_zero_ext', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_zero_ext(__in Z3_context c, __in unsigned i, __in Z3_ast t1);

    /**
       \brief \mlh mk_repeat c i t1 \endmlh
       Repeat the given bit-vector up length <tt>i</tt>.
       
       The node \c t1 must have a bit-vector sort. 
    
       def_API('Z3_mk_repeat', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_repeat(__in Z3_context c, __in unsigned i, __in Z3_ast t1);

    /**
       \brief \mlh mk_bvshl c t1 t2 \endmlh
       Shift left.

       It is equivalent to multiplication by <tt>2^x</tt> where \c x is the value of the
       third argument.

       NB. The semantics of shift operations varies between environments. This 
       definition does not necessarily capture directly the semantics of the 
       programming language or assembly architecture you are modeling.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvshl', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvshl(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvlshr c t1 t2 \endmlh
       Logical shift right.

       It is equivalent to unsigned division by <tt>2^x</tt> where \c x is the
       value of the third argument.

       NB. The semantics of shift operations varies between environments. This 
       definition does not necessarily capture directly the semantics of the 
       programming language or assembly architecture you are modeling.

       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvlshr', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvlshr(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvashr c t1 t2 \endmlh
       Arithmetic shift right.
       
       It is like logical shift right except that the most significant
       bits of the result always copy the most significant bit of the
       second argument.

       The semantics of shift operations varies between environments. This 
       definition does not necessarily capture directly the semantics of the 
       programming language or assembly architecture you are modeling.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvashr', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvashr(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
    
    /**
       \brief \mlh mk_rotate_left c i t1 \endmlh
       Rotate bits of \c t1 to the left \c i times.
       
       The node \c t1 must have a bit-vector sort. 

       def_API('Z3_mk_rotate_left', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_rotate_left(__in Z3_context c, __in unsigned i, __in Z3_ast t1);
    
    /**
       \brief \mlh mk_rotate_right c i t1 \endmlh
       Rotate bits of \c t1 to the right \c i times.
       
       The node \c t1 must have a bit-vector sort. 
       
       def_API('Z3_mk_rotate_right', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_rotate_right(__in Z3_context c, __in unsigned i, __in Z3_ast t1);

    /**
       \brief \mlh mk_ext_rotate_left c t1 t2 \endmlh
       Rotate bits of \c t1 to the left \c t2 times.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_ext_rotate_left', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_ext_rotate_left(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_ext_rotate_right c t1 t2 \endmlh
       Rotate bits of \c t1 to the right \c t2 times.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.
       
       def_API('Z3_mk_ext_rotate_right', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_ext_rotate_right(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
    
    /**
       \brief \mlh mk_int2bv c n t1 \endmlh
       Create an \c n bit bit-vector from the integer argument \c t1.

       NB. This function is essentially treated as uninterpreted. 
       So you cannot expect Z3 to precisely reflect the semantics of this function
       when solving constraints with this function.
       
       The node \c t1 must have integer sort. 
       
       def_API('Z3_mk_int2bv', AST, (_in(CONTEXT), _in(UINT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_int2bv(__in Z3_context c, __in unsigned n, __in Z3_ast t1);

    /**
       \brief \mlh mk_bv2int c t1 is_signed \endmlh
       Create an integer from the bit-vector argument \c t1.
       If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned. 
       So the result is non-negative
       and in the range <tt>[0..2^N-1]</tt>, where N are the number of bits in \c t1.
       If \c is_signed is true, \c t1 is treated as a signed bit-vector.

       This function is essentially treated as uninterpreted. 
       So you cannot expect Z3 to precisely reflect the semantics of this function
       when solving constraints with this function.

       The node \c t1 must have a bit-vector sort. 

       def_API('Z3_mk_bv2int', AST, (_in(CONTEXT), _in(AST), _in(BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bv2int(__in Z3_context c,__in Z3_ast t1, Z3_bool is_signed);

    /**
       \brief \mlh mk_bvadd_no_overflow c t1 t2 is_signed \endmlh
       Create a predicate that checks that the bit-wise addition
       of \c t1 and \c t2 does not overflow.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvadd_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bvadd_no_overflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2, Z3_bool is_signed);

    /**
       \brief \mlh mk_bvadd_no_underflow c t1 t2 \endmlh
       Create a predicate that checks that the bit-wise signed addition
       of \c t1 and \c t2 does not underflow.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.
    
       def_API('Z3_mk_bvadd_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvadd_no_underflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvsub_no_overflow c t1 t2 \endmlh
       Create a predicate that checks that the bit-wise signed subtraction
       of \c t1 and \c t2 does not overflow.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.
       
       def_API('Z3_mk_bvsub_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsub_no_overflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvsub_no_underflow c t1 t2 is_signed \endmlh
       Create a predicate that checks that the bit-wise subtraction
       of \c t1 and \c t2 does not underflow.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvsub_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bvsub_no_underflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2, Z3_bool is_signed);

    /**
       \brief \mlh mk_bvsdiv_no_overflow c t1 t2 \endmlh
       Create a predicate that checks that the bit-wise signed division 
       of \c t1 and \c t2 does not overflow.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.
       
       def_API('Z3_mk_bvsdiv_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);

    /**
       \brief \mlh mk_bvneg_no_overflow c t1 \endmlh
       Check that bit-wise negation does not overflow when 
       \c t1 is interpreted as a signed bit-vector.
       
       The node \c t1 must have bit-vector sort.

       def_API('Z3_mk_bvneg_no_overflow', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvneg_no_overflow(__in Z3_context c, __in Z3_ast t1);

    /**
       \brief \mlh mk_bvmul_no_overflow c t1 t2 is_signed \endmlh
       Create a predicate that checks that the bit-wise multiplication
       of \c t1 and \c t2 does not overflow.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.
       
       def_API('Z3_mk_bvmul_no_overflow', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(BOOL)))
    */
    Z3_ast Z3_API Z3_mk_bvmul_no_overflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2, Z3_bool is_signed);

    /**
       \brief \mlh mk_bvmul_no_underflow c t1 t2 \endmlh
       Create a predicate that checks that the bit-wise signed multiplication
       of \c t1 and \c t2 does not underflow.
       
       The nodes \c t1 and \c t2 must have the same bit-vector sort.

       def_API('Z3_mk_bvmul_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_bvmul_no_underflow(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2);
    /*@}*/

    /**
       @name Arrays
    */

    /*@{*/
    /**
       \brief \mlh mk_select c a i \endmlh
       Array read.
       The argument \c a is the array and \c i is the index of the array that gets read.      
 
       The node \c a must have an array sort <tt>[domain -> range]</tt>, 
       and \c i must have the sort \c domain.
       The sort of the result is \c range.

       \sa Z3_mk_array_sort
       \sa Z3_mk_store

       def_API('Z3_mk_select', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_select(__in Z3_context c, __in Z3_ast a, __in Z3_ast i);
    
    /**
       \brief \mlh mk_store c a i v \endmlh
       Array update.
       
       The node \c a must have an array sort <tt>[domain -> range]</tt>, \c i must have sort \c domain,
       \c v must have sort range. The sort of the result is <tt>[domain -> range]</tt>.
       The semantics of this function is given by the theory of arrays described in the SMT-LIB
       standard. See http://smtlib.org for more details.
       The result of this function is an array that is equal to \c a (with respect to \c select)
       on all indices except for \c i, where it maps to \c v (and the \c select of \c a with 
       respect to \c i may be a different value).
       
       \sa Z3_mk_array_sort
       \sa Z3_mk_select

       def_API('Z3_mk_store', AST, (_in(CONTEXT), _in(AST), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_store(__in Z3_context c, __in Z3_ast a, __in Z3_ast i, __in Z3_ast v);

    /**
        \brief Create the constant array.
         
        The resulting term is an array, such that a \c select on an arbitrary index 
        produces the value \c v.

        \param c logical context.
        \param domain domain sort for the array.
        \param v value that the array maps to.

        def_API('Z3_mk_const_array', AST, (_in(CONTEXT), _in(SORT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_const_array(__in Z3_context c, __in Z3_sort domain, __in Z3_ast v);

    /**
       \brief \mlh mk_map f n args \endmlh
       map f on the the argument arrays.
       
       The \c n nodes \c args must be of array sorts <tt>[domain_i -> range_i]</tt>.
       The function declaration \c f must have type <tt> range_1 .. range_n -> range</tt>.
       \c v must have sort range. The sort of the result is <tt>[domain_i -> range]</tt>.
       
       \sa Z3_mk_array_sort
       \sa Z3_mk_store
       \sa Z3_mk_select

       def_API('Z3_mk_map', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_mk_map(__in Z3_context c, __in Z3_func_decl f, unsigned n, __in Z3_ast const* args);

    /**
        \brief Access the array default value.
        Produces the default range value, for arrays that can be represented as 
        finite maps with a default range value.

        \param c logical context.
        \param array array value whose default range value is accessed.

        def_API('Z3_mk_array_default', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_array_default(__in Z3_context c, __in Z3_ast array);
    /*@}*/

    /**
       @name Sets
    */
    /*@{*/
    /**
       \brief Create Set type.

       def_API('Z3_mk_set_sort', SORT, (_in(CONTEXT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_mk_set_sort(__in Z3_context c, __in Z3_sort ty);

    /**
        \brief Create the empty set.

        def_API('Z3_mk_empty_set', AST, (_in(CONTEXT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_empty_set(__in Z3_context c, __in Z3_sort domain);

    /**
        \brief Create the full set.

        def_API('Z3_mk_full_set', AST, (_in(CONTEXT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_full_set(__in Z3_context c, __in Z3_sort domain);

    /**
       \brief Add an element to a set.
       
       The first argument must be a set, the second an element.

       def_API('Z3_mk_set_add', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_add(__in Z3_context c, __in Z3_ast set, __in Z3_ast elem);

    /**
       \brief Remove an element to a set.
       
       The first argument must be a set, the second an element.

       def_API('Z3_mk_set_del', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_del(__in Z3_context c, __in Z3_ast set, __in Z3_ast elem);

    /**
       \brief Take the union of a list of sets.

       def_API('Z3_mk_set_union', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_set_union(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);

    /**
       \brief Take the intersection of a list of sets.

       def_API('Z3_mk_set_intersect', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_ast Z3_API Z3_mk_set_intersect(__in Z3_context c, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);

    /**
       \brief Take the set difference between two sets.

       def_API('Z3_mk_set_difference', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_difference(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);

    /**
       \brief Take the complement of a set.

       def_API('Z3_mk_set_complement', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_complement(__in Z3_context c, __in Z3_ast arg);

    /**
       \brief Check for set membership.
       
       The first argument should be an element type of the set.

       def_API('Z3_mk_set_member', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_member(__in Z3_context c, __in Z3_ast elem, __in Z3_ast set);

    /**
       \brief Check for subsetness of sets.

       def_API('Z3_mk_set_subset', AST, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_set_subset(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2);
    /*@}*/

    /**
       @name Numerals
    */
    /*@{*/

#ifdef ML4only
#include <mlx_mk_numeral.idl>
#endif

    /**
       \mlonly {4 {L Redundant low-level API}} \endmlonly
    */

    /**
       \brief Create a numeral of a given sort. 

       \param c logical context.
       \param numeral A string representing the numeral value in decimal notation. If the given sort is a real, then the numeral can be a rational, that is, a string of the form <tt>[num]* / [num]*</tt>.
       \param ty The sort of the numeral. In the current implementation, the given sort can be an int, real, finite-domain, or bit-vectors of arbitrary size. 
       
       \sa Z3_mk_int
       \conly \sa Z3_mk_unsigned_int

       def_API('Z3_mk_numeral', AST, (_in(CONTEXT), _in(STRING), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_numeral(__in Z3_context c, __in Z3_string numeral, __in Z3_sort ty);

    /**
       \brief Create a real from a fraction.

       \param c logical context.
       \param num numerator of rational.
       \param den denomerator of rational.

       \pre den != 0

       \sa Z3_mk_numeral
       \sa Z3_mk_int
       \conly \sa Z3_mk_unsigned_int

       def_API('Z3_mk_real', AST, (_in(CONTEXT), _in(INT), _in(INT)))
    */
    Z3_ast Z3_API Z3_mk_real(__in Z3_context c, __in int num, __in int den);
    
    /**
       \brief Create a numeral of an int, bit-vector, or finite-domain sort. 
       
       This function can be use to create numerals that fit in a machine integer.
       It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

       \sa Z3_mk_numeral

       def_API('Z3_mk_int', AST, (_in(CONTEXT), _in(INT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_int(__in Z3_context c, __in int v, __in Z3_sort ty);
    
#ifdef Conly
    /**
       \brief Create a numeral of a int, bit-vector, or finite-domain sort. 
       
       This function can be use to create numerals that fit in a machine unsinged integer.
       It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

       \sa Z3_mk_numeral

       def_API('Z3_mk_unsigned_int', AST, (_in(CONTEXT), _in(UINT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_unsigned_int(__in Z3_context c, __in unsigned v, __in Z3_sort ty);
#endif

    /**
       \brief Create a numeral of a int, bit-vector, or finite-domain sort. 
       
       This function can be use to create numerals that fit in a machine __int64 integer.
       It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

       \sa Z3_mk_numeral

       def_API('Z3_mk_int64', AST, (_in(CONTEXT), _in(INT64), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_int64(__in Z3_context c, __in __int64 v, __in Z3_sort ty);

#ifdef Conly
    /**
       \brief Create a numeral of a int, bit-vector, or finite-domain sort. 
       
       This function can be use to create numerals that fit in a machine unsigned __int64 integer.
       It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

       \sa Z3_mk_numeral

       def_API('Z3_mk_unsigned_int64', AST, (_in(CONTEXT), _in(UINT64), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_unsigned_int64(__in Z3_context c, __in unsigned __int64 v, __in Z3_sort ty);
#endif

    /*@}*/

    /**
       @name Quantifiers
    */
    /*@{*/

    /**
       \brief Create a pattern for quantifier instantiation.

       Z3 uses pattern matching to instantiate quantifiers. If a
       pattern is not provided for a quantifier, then Z3 will
       automatically compute a set of patterns for it. However, for
       optimal performance, the user should provide the patterns.

       Patterns comprise a list of terms. The list should be
       non-empty.  If the list comprises of more than one term, it is
       a called a multi-pattern.
       
       In general, one can pass in a list of (multi-)patterns in the
       quantifier constructor.

       \sa Z3_mk_forall
       \sa Z3_mk_exists

       def_API('Z3_mk_pattern', PATTERN, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
    */
    Z3_pattern Z3_API Z3_mk_pattern(
        __in Z3_context c,
        __in unsigned num_patterns, __in_ecount(num_patterns) Z3_ast const terms[]);

    /**
       \brief Create a bound variable.

       Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
       the meaning of de-Bruijn indices by indicating the compilation process from
       non-de-Bruijn formulas to de-Bruijn format.

       \verbatim 
       abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
       abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
       abs1(x, x, n) = b_n
       abs1(y, x, n) = y
       abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
       abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
       \endverbatim

       The last line is significant: the index of a bound variable is different depending
       on the scope in which it appears. The deeper x appears, the higher is its
       index.
       
       \param c logical context
       \param index de-Bruijn index
       \param ty sort of the bound variable

       \sa Z3_mk_forall
       \sa Z3_mk_exists

       def_API('Z3_mk_bound', AST, (_in(CONTEXT), _in(UINT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_mk_bound(__in Z3_context c, __in unsigned index, __in Z3_sort ty);
    
    /**
       \brief Create a forall formula. It takes an expression \c body that contains bound variables
       of the same sorts as the sorts listed in the array \c sorts. The bound variables are de-Bruijn indices created
       using #Z3_mk_bound. The array \c decl_names contains the names that the quantified formula uses for the 
       bound variables. Z3 applies the convention that the last element in the \c decl_names and \c sorts array
       refers to the variable with index 0, the second to last element of \c decl_names and \c sorts refers
       to the variable with index 1, etc.
       

       \mlonly [mk_forall c w p t n b] creates a forall formula, where
       [w] is the weight, [p] is an array of patterns, [t] is an array
       with the sorts of the bound variables, [n] is an array with the
       'names' of the bound variables, and [b] is the body of the
       quantifier. Quantifiers are associated with weights indicating
       the importance of using the quantifier during
       instantiation. \endmlonly
       
       
       \param c logical context.
       \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param num_decls number of variables to be bound.
       \param sorts the sorts of the bound variables.
       \param decl_names names of the bound variables
       \param body the body of the quantifier.
       
       \sa Z3_mk_pattern
       \sa Z3_mk_bound
       \sa Z3_mk_exists

       def_API('Z3_mk_forall', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, PATTERN), _in(UINT), _in_array(4, SORT), _in_array(4, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_forall(__in Z3_context c, __in unsigned weight,
                               __in unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
                               __in unsigned num_decls, __in_ecount(num_decls) Z3_sort const sorts[],
                               __in_ecount(num_decls) Z3_symbol const decl_names[],
                               __in Z3_ast body);

    /**
       \brief Create an exists formula. Similar to #Z3_mk_forall.
       
       \sa Z3_mk_pattern
       \sa Z3_mk_bound
       \sa Z3_mk_forall
       \sa Z3_mk_quantifier

       def_API('Z3_mk_exists', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, PATTERN), _in(UINT), _in_array(4, SORT), _in_array(4, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_exists(__in Z3_context c, __in unsigned weight,
                               __in unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
                               __in unsigned num_decls, __in_ecount(num_decls) Z3_sort const sorts[],
                               __in_ecount(num_decls) Z3_symbol const decl_names[],
                               __in Z3_ast body);

    /**
       \brief Create a quantifier - universal or existential, with pattern hints. 
       See the documentation for #Z3_mk_forall for an explanation of the parameters.
       
       \param c logical context.
       \param is_forall flag to indicate if this is a universal or existential quantifier.
       \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param num_decls number of variables to be bound.
       \param sorts array of sorts of the bound variables.
       \param decl_names names of the bound variables.
       \param body the body of the quantifier.
       
       \sa Z3_mk_pattern
       \sa Z3_mk_bound
       \sa Z3_mk_forall
       \sa Z3_mk_exists

       def_API('Z3_mk_quantifier', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(UINT), _in_array(3, PATTERN), _in(UINT), _in_array(5, SORT), _in_array(5, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_quantifier(
        __in Z3_context c, 
        __in Z3_bool is_forall, 
        __in unsigned weight, 
        __in unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[], 
        __in unsigned num_decls, __in_ecount(num_decls) Z3_sort const sorts[], 
        __in_ecount(num_decls) Z3_symbol const decl_names[], 
        __in Z3_ast body);


    /**
       \brief Create a quantifier - universal or existential, with pattern hints, no patterns, and attributes
       
       \param c logical context.
       \param is_forall flag to indicate if this is a universal or existential quantifier.
       \param quantifier_id identifier to identify quantifier
       \param skolem_id identifier to identify skolem constants introduced by quantifier.
       \param weight quantifiers are associated with weights indicating the importance of using the quantifier during instantiation. By default, pass the weight 0.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param num_no_patterns number of no_patterns.
       \param no_patterns array containing subexpressions to be excluded from inferred patterns.
       \param num_decls number of variables to be bound.
       \param sorts array of sorts of the bound variables.
       \param decl_names names of the bound variables.
       \param body the body of the quantifier.
       
       \sa Z3_mk_pattern
       \sa Z3_mk_bound
       \sa Z3_mk_forall
       \sa Z3_mk_exists

       def_API('Z3_mk_quantifier_ex', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(5, PATTERN), _in(UINT), _in_array(7, AST), _in(UINT), _in_array(9, SORT), _in_array(9, SYMBOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_quantifier_ex(
        __in Z3_context c, 
        __in Z3_bool is_forall, 
        __in unsigned weight, 
        __in Z3_symbol quantifier_id,
        __in Z3_symbol skolem_id,
        __in unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[], 
        __in unsigned num_no_patterns, __in_ecount(num_no_patterns) Z3_ast const no_patterns[], 
        __in unsigned num_decls, __in_ecount(num_decls) Z3_sort const sorts[], 
        __in_ecount(num_decls) Z3_symbol const decl_names[], 
        __in Z3_ast body);

    /**
       \brief Create a universal quantifier using a list of constants that
       will form the set of bound variables.

       \param c logical context.
       \param weight quantifiers are associated with weights indicating the importance of using 
              the quantifier during instantiation. By default, pass the weight 0.
       \param num_bound number of constants to be abstracted into bound variables.
       \param bound array of constants to be abstracted into bound variables.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param body the body of the quantifier.
       
       \sa Z3_mk_pattern
       \sa Z3_mk_exists_const

       def_API('Z3_mk_forall_const', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, APP), _in(UINT), _in_array(4, PATTERN), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_forall_const(
        __in Z3_context c, 
        unsigned weight,
        unsigned num_bound,
        __in_ecount(num_bound) Z3_app const bound[],
        unsigned num_patterns,
        __in_ecount(num_patterns) Z3_pattern const patterns[],
        __in Z3_ast body
        );

    /**
       \brief Similar to #Z3_mk_forall_const.

       \brief Create an existential quantifier using a list of constants that
       will form the set of bound variables.

       \param c logical context.
       \param weight quantifiers are associated with weights indicating the importance of using 
              the quantifier during instantiation. By default, pass the weight 0.
       \param num_bound number of constants to be abstracted into bound variables.
       \param bound array of constants to be abstracted into bound variables.
       \param num_patterns number of patterns.
       \param patterns array containing the patterns created using #Z3_mk_pattern.
       \param body the body of the quantifier.
       
       \sa Z3_mk_pattern
       \sa Z3_mk_forall_const

       def_API('Z3_mk_exists_const', AST, (_in(CONTEXT), _in(UINT), _in(UINT), _in_array(2, APP), _in(UINT), _in_array(4, PATTERN), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_exists_const(
        __in Z3_context c, 
        unsigned weight,
        unsigned num_bound,
        __in_ecount(num_bound) Z3_app const bound[],
        unsigned num_patterns,
        __in_ecount(num_patterns) Z3_pattern const patterns[],
        __in Z3_ast body
        );

    /**
       \brief Create a universal or existential 
       quantifier using a list of constants that
       will form the set of bound variables.

       def_API('Z3_mk_quantifier_const', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(UINT), _in_array(3, APP), _in(UINT), _in_array(5, PATTERN), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_quantifier_const(
        __in Z3_context c, 
        Z3_bool is_forall,
        unsigned weight,
        unsigned num_bound,  __in_ecount(num_bound) Z3_app const bound[],
        unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
        __in Z3_ast body
        );



    /**
       \brief Create a universal or existential 
       quantifier using a list of constants that
       will form the set of bound variables.

       def_API('Z3_mk_quantifier_const_ex', AST, (_in(CONTEXT), _in(BOOL), _in(UINT), _in(SYMBOL), _in(SYMBOL), _in(UINT), _in_array(5, APP), _in(UINT), _in_array(7, PATTERN), _in(UINT), _in_array(9, AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_quantifier_const_ex(
        __in Z3_context c, 
        Z3_bool is_forall,
        unsigned weight,
        __in Z3_symbol quantifier_id,
        __in Z3_symbol skolem_id,
        unsigned num_bound,  __in_ecount(num_bound) Z3_app const bound[],
        unsigned num_patterns, __in_ecount(num_patterns) Z3_pattern const patterns[],
        unsigned num_no_patterns, __in_ecount(num_no_patterns) Z3_ast const no_patterns[],
        __in Z3_ast body
        );

    /*@}*/

    /**
       @name Accessors
    */
    /*@{*/

    /**
       \mlonly {3 {L Symbols}} \endmlonly
    */

#ifdef ML4only
#include <mlx_symbol_refine.idl>
#endif

    /**
       \mlonly {4 {L Redundant low-level API}} \endmlonly
    */

    /**
       \brief Return \c Z3_INT_SYMBOL if the symbol was constructed
       using #Z3_mk_int_symbol, and \c Z3_STRING_SYMBOL if the symbol
       was constructed using #Z3_mk_string_symbol.

       def_API('Z3_get_symbol_kind', UINT, (_in(CONTEXT), _in(SYMBOL)))
    */
    Z3_symbol_kind Z3_API Z3_get_symbol_kind(__in Z3_context c, __in Z3_symbol s);

    /**
       \brief \mlh get_symbol_int c s \endmlh
       Return the symbol int value. 
       
       \pre Z3_get_symbol_kind(s) == Z3_INT_SYMBOL

       \sa Z3_mk_int_symbol

       def_API('Z3_get_symbol_int', INT, (_in(CONTEXT), _in(SYMBOL)))
    */
    int Z3_API Z3_get_symbol_int(__in Z3_context c, __in Z3_symbol s);
    
    /**
       \brief \mlh get_symbol_string c s \endmlh
       Return the symbol name. 

       \pre Z3_get_symbol_string(s) == Z3_STRING_SYMBOL

       \conly \warning The returned buffer is statically allocated by Z3. It will
       \conly be automatically deallocated when #Z3_del_context is invoked.
       \conly So, the buffer is invalidated in the next call to \c Z3_get_symbol_string.

       \sa Z3_mk_string_symbol
    
       def_API('Z3_get_symbol_string', STRING, (_in(CONTEXT), _in(SYMBOL)))
    */
    Z3_string Z3_API Z3_get_symbol_string(__in Z3_context c, __in Z3_symbol s);


    /**
       \mlonly {3 {L Sorts}} \endmlonly
    */

#ifdef ML4only
#include <mlx_sort_refine.idl>
#endif

    /**
       \brief Return the sort name as a symbol. 

       def_API('Z3_get_sort_name', SYMBOL, (_in(CONTEXT), _in(SORT)))
    */
    Z3_symbol Z3_API Z3_get_sort_name(__in Z3_context c, __in Z3_sort d);

    /**
        \brief Return a unique identifier for \c s.
        \mlonly \remark Implicitly used by [Pervasives.( = )] and [Pervasives.compare]. \endmlonly

        def_API('Z3_get_sort_id', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_sort_id(__in Z3_context c, Z3_sort s);

    /**
       \mlonly {4 {L Redundant low-level API}} \endmlonly
    */

    /**
       \brief Convert a \c Z3_sort into \c Z3_ast. \conly This is just type casting.
       \mlonly \remark [sort_to_ast c s] can be replaced by [(s :> ast)]. \endmlonly

       def_API('Z3_sort_to_ast', AST, (_in(CONTEXT), _in(SORT)))
    */
    Z3_ast Z3_API Z3_sort_to_ast(__in Z3_context c, __in Z3_sort s);
    
    /**
       \brief compare sorts.
       \mlonly \remark [Pervasives.( = )] or [Pervasives.compare] can also be used. \endmlonly

       def_API('Z3_is_eq_sort', BOOL, (_in(CONTEXT), _in(SORT), _in(SORT)))
    */
    Z3_bool Z3_API Z3_is_eq_sort(__in Z3_context c, __in Z3_sort s1, __in Z3_sort s2);

    /**
       \brief Return the sort kind (e.g., array, tuple, int, bool, etc).

       \sa Z3_sort_kind

       def_API('Z3_get_sort_kind', UINT, (_in(CONTEXT), _in(SORT)))
    */
    Z3_sort_kind Z3_API Z3_get_sort_kind(__in Z3_context c, __in Z3_sort t);


    /**
       \brief \mlh get_bv_sort_size c t \endmlh
       Return the size of the given bit-vector sort. 

       \pre Z3_get_sort_kind(c, t) == Z3_BV_SORT

       \sa Z3_mk_bv_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_bv_sort_size', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_bv_sort_size(__in Z3_context c, __in Z3_sort t);

    /**
        \conly \brief Store the size of the sort in \c r. Return Z3_FALSE if the call failed.
        \mlonly \brief Return the size of the sort in \c r.  Return \c None if the call failed. \endmlonly
        That is, Z3_get_sort_kind(s) == Z3_FINITE_DOMAIN_SORT

        def_API('Z3_get_finite_domain_sort_size', BOOL, (_in(CONTEXT), _in(SORT), _out(UINT64)))
    */
    Z3_bool_opt Z3_API Z3_get_finite_domain_sort_size(__in Z3_context c, __in Z3_sort s, __out_opt unsigned __int64* r);


    /**
       \brief \mlh get_array_sort_domain c t \endmlh
       Return the domain of the given array sort.
       
       \pre Z3_get_sort_kind(c, t) == Z3_ARRAY_SORT

       \sa Z3_mk_array_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_array_sort_domain', SORT, (_in(CONTEXT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_get_array_sort_domain(__in Z3_context c, __in Z3_sort t);

    /**
       \brief \mlh get_array_sort_range c t \endmlh 
       Return the range of the given array sort. 

       \pre Z3_get_sort_kind(c, t) == Z3_ARRAY_SORT

       \sa Z3_mk_array_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_array_sort_range', SORT, (_in(CONTEXT), _in(SORT)))
    */
    Z3_sort Z3_API Z3_get_array_sort_range(__in Z3_context c, __in Z3_sort t);


    /**
       \brief \mlh get_tuple_sort_mk_decl c t \endmlh
       Return the constructor declaration of the given tuple
       sort. 

       \pre Z3_get_sort_kind(c, t) == Z3_DATATYPE_SORT

       \sa Z3_mk_tuple_sort
       \sa Z3_get_sort_kind
       
       def_API('Z3_get_tuple_sort_mk_decl', FUNC_DECL, (_in(CONTEXT), _in(SORT)))
    */
    Z3_func_decl Z3_API Z3_get_tuple_sort_mk_decl(__in Z3_context c, __in Z3_sort t);
    
    /**
       \brief \mlh get_tuple_sort_num_fields c t \endmlh
       Return the number of fields of the given tuple sort. 

       \pre Z3_get_sort_kind(c, t) == Z3_DATATYPE_SORT

       \sa Z3_mk_tuple_sort
       \sa Z3_get_sort_kind

       def_API('Z3_get_tuple_sort_num_fields', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_tuple_sort_num_fields(__in Z3_context c, __in Z3_sort t);

    /**
       \brief \mlh get_tuple_sort_field_decl c t i \endmlh
       Return the i-th field declaration (i.e., projection function declaration)
       of the given tuple sort. 

       \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
       \pre i < Z3_get_tuple_sort_num_fields(c, t)
       
       \sa Z3_mk_tuple_sort
       \sa Z3_get_sort_kind
       
       def_API('Z3_get_tuple_sort_field_decl', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_tuple_sort_field_decl(__in Z3_context c, __in Z3_sort t, __in unsigned i);

    /**
        \brief Return number of constructors for datatype.

        \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT

        \sa Z3_get_datatype_sort_constructor
        \sa Z3_get_datatype_sort_recognizer
        \sa Z3_get_datatype_sort_constructor_accessor

        def_API('Z3_get_datatype_sort_num_constructors', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_datatype_sort_num_constructors(
        __in Z3_context c, __in Z3_sort t);

    /**
        \brief Return idx'th constructor.

        \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
        \pre idx < Z3_get_datatype_sort_num_constructors(c, t)

        \sa Z3_get_datatype_sort_num_constructors
        \sa Z3_get_datatype_sort_recognizer
        \sa Z3_get_datatype_sort_constructor_accessor

        def_API('Z3_get_datatype_sort_constructor', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_datatype_sort_constructor(
        __in Z3_context c, __in Z3_sort t, unsigned idx);

    /**
        \brief Return idx'th recognizer.

        \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
        \pre idx < Z3_get_datatype_sort_num_constructors(c, t)

        \sa Z3_get_datatype_sort_num_constructors
        \sa Z3_get_datatype_sort_constructor
        \sa Z3_get_datatype_sort_constructor_accessor

        def_API('Z3_get_datatype_sort_recognizer', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_datatype_sort_recognizer(
        __in Z3_context c, __in Z3_sort t, unsigned idx);

    /**
        \brief Return idx_a'th accessor for the idx_c'th constructor.

        \pre Z3_get_sort_kind(t) == Z3_DATATYPE_SORT
        \pre idx_c < Z3_get_datatype_sort_num_constructors(c, t)
        \pre idx_a < Z3_get_domain_size(c, Z3_get_datatype_sort_constructor(c, idx_c))

        \sa Z3_get_datatype_sort_num_constructors
        \sa Z3_get_datatype_sort_constructor
        \sa Z3_get_datatype_sort_recognizer

        def_API('Z3_get_datatype_sort_constructor_accessor', FUNC_DECL, (_in(CONTEXT), _in(SORT), _in(UINT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_datatype_sort_constructor_accessor(
        __in Z3_context c, __in Z3_sort t, unsigned idx_c, unsigned idx_a);

    /**
       \brief Update record field with a value.

       This corresponds to the 'with' construct in OCaml. 
       It has the effect of updating a record field with a given value.
       The remaining fields are left unchanged. It is the record
       equivalent of an array store (see \sa Z3_mk_store).
       If the datatype has more than one constructor, then the update function
       behaves as identity if there is a miss-match between the accessor and
       constructor. For example ((_ update-field car) nil 1) is nil, 
       while ((_ update-field car) (cons 2 nil) 1) is (cons 1 nil).


       \pre Z3_get_sort_kind(Z3_get_sort(c, t)) == Z3_get_domain(c, field_access, 1) == Z3_DATATYPE_SORT
       \pre Z3_get_sort(c, value) == Z3_get_range(c, field_access)


       def_API('Z3_datatype_update_field', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(AST), _in(AST)))
    */
    Z3_ast Z3_API Z3_datatype_update_field(
        __in Z3_context c,  __in Z3_func_decl field_access, 
        __in Z3_ast t, __in Z3_ast value);

    /**
        \brief Return arity of relation.

        \pre Z3_get_sort_kind(s) == Z3_RELATION_SORT

        \sa Z3_get_relation_column

        def_API('Z3_get_relation_arity', UINT, (_in(CONTEXT), _in(SORT)))
    */
    unsigned Z3_API Z3_get_relation_arity(__in Z3_context c, __in Z3_sort s);

    /**
        \brief Return sort at i'th column of relation sort.

        \pre Z3_get_sort_kind(c, s) == Z3_RELATION_SORT
        \pre col < Z3_get_relation_arity(c, s)

        \sa Z3_get_relation_arity
        
        def_API('Z3_get_relation_column', SORT, (_in(CONTEXT), _in(SORT), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_relation_column(__in Z3_context c, __in Z3_sort s, unsigned col);


    /**
       \brief Pseudo-Boolean relations.

       Encode p1 + p2 + ... + pn <= k

       def_API('Z3_mk_atmost', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in(UINT)))
    */

    Z3_ast Z3_API Z3_mk_atmost(__in Z3_context c, __in unsigned num_args, 
                               __in_ecount(num_args) Z3_ast const args[], __in unsigned k);

    /**
       \brief Pseudo-Boolean relations.

       Encode k1*p1 + k2*p2 + ... + kn*pn <= k

       def_API('Z3_mk_pble', AST, (_in(CONTEXT), _in(UINT), _in_array(1,AST), _in_array(1,INT), _in(INT)))
    */

    Z3_ast Z3_API Z3_mk_pble(__in Z3_context c, __in unsigned num_args, 
                             __in_ecount(num_args) Z3_ast const args[], __in_ecount(num_args) int coeffs[],
                             __in int k);

    /**
       \mlonly {3 {L Function Declarations}} \endmlonly
    */
    
    /**
       \brief Convert a \c Z3_func_decl into \c Z3_ast. \conly This is just type casting.
       \mlonly \remark [func_decl_to_ast c f]  can be replaced by [(f :> ast)]. \endmlonly

       def_API('Z3_func_decl_to_ast', AST, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_ast Z3_API Z3_func_decl_to_ast(__in Z3_context c, __in Z3_func_decl f);

    /**
       \brief compare terms.
       \mlonly \remark [Pervasives.( = )] or [Pervasives.compare] can also be used. \endmlonly

       def_API('Z3_is_eq_func_decl', BOOL, (_in(CONTEXT), _in(FUNC_DECL), _in(FUNC_DECL)))
    */
    Z3_bool Z3_API Z3_is_eq_func_decl(__in Z3_context c, __in Z3_func_decl f1, Z3_func_decl f2);

    /**
        \brief Return a unique identifier for \c f.
        \mlonly \remark Implicitly used by [Pervasives.( = )] and [Pervasives.compare]. \endmlonly
    
        def_API('Z3_get_func_decl_id', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_get_func_decl_id(__in Z3_context c, Z3_func_decl f);

    /**
       \brief Return the constant declaration name as a symbol. 
    
       def_API('Z3_get_decl_name', SYMBOL, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_symbol Z3_API Z3_get_decl_name(__in Z3_context c, __in Z3_func_decl d);

    /**
       \brief Return declaration kind corresponding to declaration.

       def_API('Z3_get_decl_kind', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_decl_kind Z3_API Z3_get_decl_kind(__in Z3_context c, __in Z3_func_decl d);

    /**
       \brief Return the number of parameters of the given declaration.

       \sa Z3_get_arity

       def_API('Z3_get_domain_size', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_get_domain_size(__in Z3_context c, __in Z3_func_decl d);

    /**
       \brief Alias for \c Z3_get_domain_size.

       \sa Z3_get_domain_size

       def_API('Z3_get_arity', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_get_arity(__in Z3_context c, __in Z3_func_decl d);

    /**
       \brief \mlh get_domain c d i \endmlh
       Return the sort of the i-th parameter of the given function declaration.
       
       \pre i < Z3_get_domain_size(d)

       \sa Z3_get_domain_size
       
       def_API('Z3_get_domain', SORT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_domain(__in Z3_context c, __in Z3_func_decl d, __in unsigned i);

#ifdef ML4only
#include <mlx_get_domains.idl>
#endif

    /**
       \brief \mlh get_range c d \endmlh
       Return the range of the given declaration. 

       If \c d is a constant (i.e., has zero arguments), then this
       function returns the sort of the constant.

       def_API('Z3_get_range', SORT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_sort Z3_API Z3_get_range(__in Z3_context c, __in Z3_func_decl d);

    /**
       \brief Return the number of parameters associated with a declaration.

       def_API('Z3_get_decl_num_parameters', UINT, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_get_decl_num_parameters(__in Z3_context c, __in Z3_func_decl d);

    /**
       \brief Return the parameter type associated with a declaration.
       
       \param c the context
       \param d the function declaration
       \param idx is the index of the named parameter it should be between 0 and the number of parameters.
    
       def_API('Z3_get_decl_parameter_kind', UINT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_parameter_kind Z3_API Z3_get_decl_parameter_kind(__in Z3_context c, __in Z3_func_decl d, unsigned idx);

    /**
       \brief Return the integer value associated with an integer parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_INT

       def_API('Z3_get_decl_int_parameter', INT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    int Z3_API Z3_get_decl_int_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);

    /**
       \brief Return the double value associated with an double parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_DOUBLE

       def_API('Z3_get_decl_double_parameter', DOUBLE, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    double Z3_API Z3_get_decl_double_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);

    /**
       \brief Return the double value associated with an double parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_SYMBOL

       def_API('Z3_get_decl_symbol_parameter', SYMBOL, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_symbol Z3_API Z3_get_decl_symbol_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);

    /**
       \brief Return the sort value associated with a sort parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_SORT

       def_API('Z3_get_decl_sort_parameter', SORT, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_decl_sort_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);

    /**
       \brief Return the expresson value associated with an expression parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_AST

       def_API('Z3_get_decl_ast_parameter', AST, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_decl_ast_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);

    /**
       \brief Return the expresson value associated with an expression parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_FUNC_DECL

       def_API('Z3_get_decl_func_decl_parameter', FUNC_DECL, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_decl_func_decl_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);

    /**
       \brief Return the rational value, as a string, associated with a rational parameter.

       \pre Z3_get_decl_parameter_kind(c, d, idx) == Z3_PARAMETER_RATIONAL

       def_API('Z3_get_decl_rational_parameter', STRING, (_in(CONTEXT), _in(FUNC_DECL), _in(UINT)))
    */
    Z3_string Z3_API Z3_get_decl_rational_parameter(__in Z3_context c, __in Z3_func_decl d, unsigned idx);

    /**
       \mlonly {3 {L Applications}} \endmlonly
    */

    /**
       \brief Convert a \c Z3_app into \c Z3_ast. \conly This is just type casting.
       \mlonly \remark [app_to_ast c a] can be replaced by [(a :> ast)]. \endmlonly
       
       def_API('Z3_app_to_ast', AST, (_in(CONTEXT), _in(APP)))
    */
    Z3_ast Z3_API Z3_app_to_ast(__in Z3_context c, __in Z3_app a);

    /**
       \brief Return the declaration of a constant or function application.

       def_API('Z3_get_app_decl', FUNC_DECL, (_in(CONTEXT), _in(APP)))
    */
    Z3_func_decl Z3_API Z3_get_app_decl(__in Z3_context c, __in Z3_app a);

    /**
       \brief \mlh get_app_num_args c a \endmlh
       Return the number of argument of an application. If \c t
       is an constant, then the number of arguments is 0.

       def_API('Z3_get_app_num_args', UINT, (_in(CONTEXT), _in(APP)))
    */
    unsigned Z3_API Z3_get_app_num_args(__in Z3_context c, __in Z3_app a);

    /**
       \brief \mlh get_app_arg c a i \endmlh
       Return the i-th argument of the given application.
       
       \pre i < Z3_get_num_args(c, a)

       def_API('Z3_get_app_arg', AST, (_in(CONTEXT), _in(APP), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_app_arg(__in Z3_context c, __in Z3_app a, __in unsigned i);

#ifdef ML4only
#include <mlx_get_app_args.idl>
#endif


    /**
       \mlonly {3 {L Terms}} \endmlonly
    */

#ifdef ML4only
#include <mlx_term_refine.idl>
#endif

    /**
       \brief compare terms.
       \mlonly \remark [Pervasives.( = )] or [Pervasives.compare] can also be used. \endmlonly

       def_API('Z3_is_eq_ast', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
    */
    Z3_bool Z3_API Z3_is_eq_ast(__in Z3_context c, __in Z3_ast t1, Z3_ast t2);

    /**
        \brief Return a unique identifier for \c t.
        The identifier is unique up to structural equality. Thus, two ast nodes
        created by the same context and having the same children and same function symbols
        have the same identifiers. Ast nodes created in the same context, but having
        different children or different functions have different identifiers.
        Variables and quantifiers are also assigned different identifiers according to
        their structure.        
        \mlonly \remark Implicitly used by [Pervasives.compare] for values of type [ast], [app], [sort], [func_decl], and [pattern]. \endmlonly

        def_API('Z3_get_ast_id', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_ast_id(__in Z3_context c, Z3_ast t);

    /**
       \brief Return a hash code for the given AST.
       The hash code is structural. You can use Z3_get_ast_id interchangably with 
       this function.
       \mlonly \remark Implicitly used by [Hashtbl.hash] for values of type [ast], [app], [sort], [func_decl], and [pattern]. \endmlonly

       def_API('Z3_get_ast_hash', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_ast_hash(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return the sort of an AST node.
       
       The AST node must be a constant, application, numeral, bound variable, or quantifier.
       
       def_API('Z3_get_sort', SORT, (_in(CONTEXT), _in(AST)))
    */
    Z3_sort Z3_API Z3_get_sort(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return true if the given expression \c t is well sorted.
       
       def_API('Z3_is_well_sorted', BOOL, (_in(CONTEXT), _in(AST)))
    */
    Z3_bool Z3_API Z3_is_well_sorted(__in Z3_context c, __in Z3_ast t);

    /**
       \brief Return Z3_L_TRUE if \c a is true, Z3_L_FALSE if it is false, and Z3_L_UNDEF otherwise.

       def_API('Z3_get_bool_value', UINT, (_in(CONTEXT), _in(AST)))
    */
    Z3_lbool Z3_API Z3_get_bool_value(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return the kind of the given AST.

       def_API('Z3_get_ast_kind', UINT, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast_kind Z3_API Z3_get_ast_kind(__in Z3_context c, __in Z3_ast a);

    /**
      def_API('Z3_is_app', BOOL, (_in(CONTEXT), _in(AST)))      
    */
    Z3_bool Z3_API Z3_is_app(__in Z3_context c, __in Z3_ast a);

    /**
      def_API('Z3_is_numeral_ast', BOOL, (_in(CONTEXT), _in(AST)))
    */
    Z3_bool Z3_API Z3_is_numeral_ast(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return true if the give AST is a real algebraic number.
    
       def_API('Z3_is_algebraic_number', BOOL, (_in(CONTEXT), _in(AST)))
    */
    Z3_bool Z3_API Z3_is_algebraic_number(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Convert an \c ast into an \c APP_AST. \conly This is just type casting.
       
       \pre \code Z3_get_ast_kind(c, a) == \c Z3_APP_AST \endcode

       def_API('Z3_to_app', APP, (_in(CONTEXT), _in(AST)))
    */
    Z3_app Z3_API Z3_to_app(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Convert an AST into a FUNC_DECL_AST. This is just type casting.
       
       \pre \code Z3_get_ast_kind(c, a) == Z3_FUNC_DECL_AST \endcode

       def_API('Z3_to_func_decl', FUNC_DECL, (_in(CONTEXT), _in(AST)))
    */
    Z3_func_decl Z3_API Z3_to_func_decl(__in Z3_context c, __in Z3_ast a);


    /**
       \mlonly {4 {L Numerals}} \endmlonly
    */

#ifdef ML4only
#include <mlx_numeral_refine.idl>
#endif

    /**
       \mlonly {5 {L Low-level API}} \endmlonly
    */

    /**
       \brief Return numeral value, as a string of a numeric constant term

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

       def_API('Z3_get_numeral_string', STRING, (_in(CONTEXT), _in(AST)))
    */
    Z3_string Z3_API Z3_get_numeral_string(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return numeral as a string in decimal notation.
       The result has at most \c precision decimal places.

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST || Z3_is_algebraic_number(c, a)
    
       def_API('Z3_get_numeral_decimal_string', STRING, (_in(CONTEXT), _in(AST), _in(UINT)))       
    */
    Z3_string Z3_API Z3_get_numeral_decimal_string(__in Z3_context c, __in Z3_ast a, __in unsigned precision);

    /**
       \brief Return the numerator (as a numeral AST) of a numeral AST of sort Real.

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

       def_API('Z3_get_numerator', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_get_numerator(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return the denominator (as a numeral AST) of a numeral AST of sort Real.

       \pre Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

       def_API('Z3_get_denominator', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_get_denominator(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return numeral value, as a pair of 64 bit numbers if the representation fits.

       \param c logical context.
       \param a term.
       \param num numerator.
       \param den denominator.
       
       Return \c Z3_TRUE if the numeral value fits in 64 bit numerals, \c Z3_FALSE otherwise.

       \pre Z3_get_ast_kind(a) == Z3_NUMERAL_AST

       def_API('Z3_get_numeral_small', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _out(INT64)))
    */
    Z3_bool Z3_API Z3_get_numeral_small(__in Z3_context c, __in Z3_ast a, __out __int64* num, __out __int64* den);

    /**
       \brief \mlh get_numeral_int c v \endmlh
       Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit in a machine int. Return Z3_TRUE if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
      
       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_int', BOOL, (_in(CONTEXT), _in(AST), _out(INT)))
    */
    Z3_bool Z3_API Z3_get_numeral_int(__in Z3_context c, __in Z3_ast v, __out int* i);

#ifdef Conly
    /**
       \brief \mlh get_numeral_uint c v \endmlh
       Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit in a machine unsigned int. Return Z3_TRUE if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
      
       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_uint', BOOL, (_in(CONTEXT), _in(AST), _out(UINT)))
    */
    Z3_bool Z3_API Z3_get_numeral_uint(__in Z3_context c, __in Z3_ast v, __out unsigned* u);
#endif

#ifdef Conly
    /**
       \brief \mlh get_numeral_uint64 c v \endmlh
       Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit in a machine unsigned __int64 int. Return Z3_TRUE if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
      
       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_uint64', BOOL, (_in(CONTEXT), _in(AST), _out(UINT64)))
    */
    Z3_bool Z3_API Z3_get_numeral_uint64(__in Z3_context c, __in Z3_ast v, __out unsigned __int64* u);
#endif

    /**
       \brief \mlh get_numeral_int64 c v \endmlh
       Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit in a machine __int64 int. Return Z3_TRUE if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST

       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64)))
    */
    Z3_bool Z3_API Z3_get_numeral_int64(__in Z3_context c, __in Z3_ast v, __out __int64* i);

    /**
       \brief \mlh get_numeral_rational_int64 c x y\endmlh
       Similar to #Z3_get_numeral_string, but only succeeds if
       the value can fit as a rational number as machine __int64 int. Return Z3_TRUE if the call succeeded.

       \pre Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST

       \sa Z3_get_numeral_string

       def_API('Z3_get_numeral_rational_int64', BOOL, (_in(CONTEXT), _in(AST), _out(INT64), _out(INT64)))
    */
    Z3_bool Z3_API Z3_get_numeral_rational_int64(__in Z3_context c, __in Z3_ast v, __out __int64* num, __out __int64* den);
    
    /**
       \brief Return a lower bound for the given real algebraic number. 
       The interval isolating the number is smaller than 1/10^precision.
       The result is a numeral AST of sort Real.

       \pre Z3_is_algebraic_number(c, a)

       def_API('Z3_get_algebraic_number_lower', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_algebraic_number_lower(__in Z3_context c, __in Z3_ast a, __in unsigned precision);

    /**
       \brief Return a upper bound for the given real algebraic number. 
       The interval isolating the number is smaller than 1/10^precision.
       The result is a numeral AST of sort Real.

       \pre Z3_is_algebraic_number(c, a)

       def_API('Z3_get_algebraic_number_upper', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision);


    /**
       \mlonly {4 {L Patterns}} \endmlonly
    */
    
    /**
       \brief Convert a Z3_pattern into Z3_ast. \conly This is just type casting.
       \mlonly \remark [pattern_to_ast c p]  can be replaced by [(p :> ast)]. \endmlonly

       def_API('Z3_pattern_to_ast', AST, (_in(CONTEXT), _in(PATTERN)))
    */
    Z3_ast Z3_API Z3_pattern_to_ast(__in Z3_context c, __in Z3_pattern p);

#ifdef ML4only
#include <mlx_get_pattern_terms.idl>
#endif

    /**
        \brief Return number of terms in pattern.

        def_API('Z3_get_pattern_num_terms', UINT, (_in(CONTEXT), _in(PATTERN)))
    */
    unsigned Z3_API Z3_get_pattern_num_terms(__in Z3_context c, __in Z3_pattern p);
    
    /**
       \brief Return i'th ast in pattern.

       def_API('Z3_get_pattern', AST, (_in(CONTEXT), _in(PATTERN), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_pattern(__in Z3_context c, __in Z3_pattern p, __in unsigned idx);


    /**
       \mlonly {4 {L Quantifiers}} \endmlonly
    */

    /**
       \brief Return index of de-Brujin bound variable.

       \pre Z3_get_ast_kind(a) == Z3_VAR_AST
    
       def_API('Z3_get_index_value', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_index_value(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Determine if quantifier is universal.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
       
       def_API('Z3_is_quantifier_forall', BOOL, (_in(CONTEXT), _in(AST)))       
    */
    Z3_bool Z3_API Z3_is_quantifier_forall(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Obtain weight of quantifier.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_weight', UINT, (_in(CONTEXT), _in(AST)))       
    */
    unsigned Z3_API Z3_get_quantifier_weight(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return number of patterns used in quantifier.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_num_patterns', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_quantifier_num_patterns(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return i'th pattern.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_pattern_ast', PATTERN, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_pattern Z3_API Z3_get_quantifier_pattern_ast(__in Z3_context c, __in Z3_ast a, unsigned i);

    /**
       \brief Return number of no_patterns used in quantifier.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_num_no_patterns', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_quantifier_num_no_patterns(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return i'th no_pattern.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_no_pattern_ast', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast(__in Z3_context c, __in Z3_ast a, unsigned i);

    /**
       \brief Return number of bound variables of quantifier.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_num_bound', UINT, (_in(CONTEXT), _in(AST)))
    */
    unsigned Z3_API Z3_get_quantifier_num_bound(__in Z3_context c, __in Z3_ast a);

    /**
       \brief Return symbol of the i'th bound variable.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

       def_API('Z3_get_quantifier_bound_name', SYMBOL, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_symbol Z3_API Z3_get_quantifier_bound_name(__in Z3_context c, __in Z3_ast a, unsigned i);

    /**
       \brief Return sort of the i'th bound variable.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
       
       def_API('Z3_get_quantifier_bound_sort', SORT, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_quantifier_bound_sort(__in Z3_context c, __in Z3_ast a, unsigned i);

    /**
       \brief Return body of quantifier.
       
       \pre Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST
       
       def_API('Z3_get_quantifier_body', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_get_quantifier_body(__in Z3_context c, __in Z3_ast a);


    /**
       \mlonly {3 {L Simplification}} \endmlonly
    */

    /**
        \brief Interface to simplifier.

        Provides an interface to the AST simplifier used by Z3.

        def_API('Z3_simplify', AST, (_in(CONTEXT), _in(AST)))
    */
    Z3_ast Z3_API Z3_simplify(__in Z3_context c, __in Z3_ast a);

#ifdef CorML4
    /**
        \brief Interface to simplifier.
        
        Provides an interface to the AST simplifier used by Z3.
        This procedure is similar to #Z3_simplify, but the behavior of the simplifier 
        can be configured using the given parameter set.

        def_API('Z3_simplify_ex', AST, (_in(CONTEXT), _in(AST), _in(PARAMS)))
    */
    Z3_ast Z3_API Z3_simplify_ex(__in Z3_context c, __in Z3_ast a, __in Z3_params p);

    /**
       \brief Return a string describing all available parameters.
    
       def_API('Z3_simplify_get_help', STRING, (_in(CONTEXT),))
    */
    Z3_string Z3_API Z3_simplify_get_help(__in Z3_context c);

    /**
       \brief Return the parameter description set for the simplify procedure.

       def_API('Z3_simplify_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT),))
    */
    Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(__in Z3_context c);
#endif
    
    /*@}*/

    /**
       @name Modifiers
    */
    /*@{*/

    /**
       \brief Update the arguments of term \c a using the arguments \c args.
       The number of arguments \c num_args should coincide 
       with the number of arguments to \c a.
       If \c a is a quantifier, then num_args has to be 1.

       def_API('Z3_update_term', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_update_term(__in Z3_context c, __in Z3_ast a, __in unsigned num_args, __in_ecount(num_args) Z3_ast const args[]);

    /**
       \brief Substitute every occurrence of <tt>from[i]</tt> in \c a with <tt>to[i]</tt>, for \c i smaller than \c num_exprs.
       The result is the new AST. The arrays \c from and \c to must have size \c num_exprs.
       For every \c i smaller than \c num_exprs, we must have that sort of <tt>from[i]</tt> must be equal to sort of <tt>to[i]</tt>.

       def_API('Z3_substitute', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_substitute(__in Z3_context c, 
                                __in Z3_ast a, 
                                __in unsigned num_exprs, 
                                __in_ecount(num_exprs) Z3_ast const from[], 
                                __in_ecount(num_exprs) Z3_ast const to[]);

    /**
       \brief Substitute the free variables in \c a with the expressions in \c to.
       For every \c i smaller than \c num_exprs, the variable with de-Bruijn index \c i is replaced with term <tt>to[i]</tt>.

       def_API('Z3_substitute_vars', AST, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
    */
    Z3_ast Z3_API Z3_substitute_vars(__in Z3_context c, 
                                     __in Z3_ast a, 
                                     __in unsigned num_exprs, 
                                     __in_ecount(num_exprs) Z3_ast const to[]);

#ifdef CorML4
    /**
       \brief Translate/Copy the AST \c a from context \c source to context \c target.
       AST \c a must have been created using context \c source.
       \pre source != target

       def_API('Z3_translate', AST, (_in(CONTEXT), _in(AST), _in(CONTEXT)))
    */
    Z3_ast Z3_API Z3_translate(__in Z3_context source, __in Z3_ast a, __in Z3_context target);
#endif
    
    /*@}*/

#ifdef CorML4
    /**
       @name Models
     */
    /*@{*/
    
#ifdef ML4only
#include <mlx_model.idl>
#endif
#ifdef Conly
    /**
       \brief Increment the reference counter of the given model.
    
       def_API('Z3_model_inc_ref', VOID, (_in(CONTEXT), _in(MODEL)))
    */
    void Z3_API Z3_model_inc_ref(__in Z3_context c, __in Z3_model m);

    /**
       \brief Decrement the reference counter of the given model.

       def_API('Z3_model_dec_ref', VOID, (_in(CONTEXT), _in(MODEL)))
    */
    void Z3_API Z3_model_dec_ref(__in Z3_context c, __in Z3_model m);
#endif
    
    /**
       \brief \mlh model_eval c m t \endmlh
       Evaluate the AST node \c t in the given model. 
       \conly Return \c Z3_TRUE if succeeded, and store the result in \c v.
       \mlonly Return \c None if the term was not successfully evaluated. \endmlonly
       
       If \c model_completion is Z3_TRUE, then Z3 will assign an interpretation for any constant or function that does
       not have an interpretation in \c m. These constants and functions were essentially don't cares.

       The evaluation may fail for the following reasons:
       
       - \c t contains a quantifier.
       
       - the model \c m is partial, that is, it doesn't have a complete interpretation for uninterpreted functions. 
       That is, the option <tt>MODEL_PARTIAL=true</tt> was used.
       
       - \c t is type incorrect.

       def_API('Z3_model_eval', BOOL, (_in(CONTEXT), _in(MODEL), _in(AST), _in(BOOL), _out(AST)))
    */
    Z3_bool_opt Z3_API Z3_model_eval(__in Z3_context c, __in Z3_model m, __in Z3_ast t, __in Z3_bool model_completion, __out_opt Z3_ast * v);

    /**
       \mlonly {4 {L Low-level API}} \endmlonly
    */

    /**
       \brief Return the interpretation (i.e., assignment) of constant \c a in the model \c m.
       Return \mlonly [None], \endmlonly \conly \c NULL,
       if the model does not assign an interpretation for \c a. 
       That should be interpreted as: the value of \c a does not matter.

       \pre Z3_get_arity(c, a) == 0

       def_API('Z3_model_get_const_interp', AST, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
    */
    Z3_ast_opt Z3_API Z3_model_get_const_interp(__in Z3_context c, __in Z3_model m, __in Z3_func_decl a);

    /**
       \brief Test if there exists an interpretation (i.e., assignment) for \c a in the model \c m.

       def_API('Z3_model_has_interp', BOOL, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
    */
    Z3_bool Z3_API Z3_model_has_interp(__in Z3_context c, __in Z3_model m, __in Z3_func_decl a);

    /**
       \brief Return the interpretation of the function \c f in the model \c m.
       Return \mlonly [None], \endmlonly \conly \c NULL,
       if the model does not assign an interpretation for \c f. 
       That should be interpreted as: the \c f does not matter.
       
       \pre Z3_get_arity(c, f) > 0

       \conly \remark Reference counting must be used to manage Z3_func_interp objects, even when the Z3_context was
       \conly created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_model_get_func_interp', FUNC_INTERP, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL)))
    */
    Z3_func_interp_opt Z3_API Z3_model_get_func_interp(__in Z3_context c, __in Z3_model m, __in Z3_func_decl f);

    /**
       \brief Return the number of constants assigned by the given model.
       
       \sa Z3_model_get_const_decl

       def_API('Z3_model_get_num_consts', UINT, (_in(CONTEXT), _in(MODEL)))
    */
    unsigned Z3_API Z3_model_get_num_consts(__in Z3_context c, __in Z3_model m);

    /**
       \brief \mlh model_get_const_decl c m i \endmlh
       Return the i-th constant in the given model. 

       \pre i < Z3_model_get_num_consts(c, m)

       \sa Z3_model_eval
       
       def_API('Z3_model_get_const_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_model_get_const_decl(__in Z3_context c, __in Z3_model m, __in unsigned i);
    
    /**
       \brief Return the number of function interpretations in the given model.
       
       A function interpretation is represented as a finite map and an 'else' value.
       Each entry in the finite map represents the value of a function given a set of arguments.

       def_API('Z3_model_get_num_funcs', UINT, (_in(CONTEXT), _in(MODEL)))
    */
    unsigned Z3_API Z3_model_get_num_funcs(__in Z3_context c, __in Z3_model m);
    
    /**
       \brief \mlh model_get_func_decl c m i \endmlh
       Return the declaration of the i-th function in the given model.

       \pre i < Z3_model_get_num_funcs(c, m)

       \sa Z3_model_get_num_funcs

       def_API('Z3_model_get_func_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_model_get_func_decl(__in Z3_context c, __in Z3_model m, __in unsigned i);
    
    /**
       \brief Return the number of uninterpreted sorts that \c m assigs an interpretation to.
       
       Z3 also provides an intepretation for uninterpreted sorts used in a formua.
       The interpretation for a sort \c s is a finite set of distinct values. We say this finite set is
       the "universe" of \c s.
       
       \sa Z3_model_get_sort
       \sa Z3_model_get_sort_universe

       def_API('Z3_model_get_num_sorts', UINT, (_in(CONTEXT), _in(MODEL)))
    */
    unsigned Z3_API Z3_model_get_num_sorts(__in Z3_context c, __in Z3_model m);

    /**
       \brief Return a uninterpreted sort that \c m assigns an interpretation.
       
       \pre i < Z3_model_get_num_sorts(c, m)
    
       \sa Z3_model_get_num_sorts
       \sa Z3_model_get_sort_universe

       def_API('Z3_model_get_sort', SORT, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_sort Z3_API Z3_model_get_sort(__in Z3_context c, __in Z3_model m, __in unsigned i);

    /**
       \brief Return the finite set of distinct values that represent the interpretation for sort \c s.
       
       \sa Z3_model_get_num_sorts
       \sa Z3_model_get_sort

       def_API('Z3_model_get_sort_universe', AST_VECTOR, (_in(CONTEXT), _in(MODEL), _in(SORT)))
    */
    Z3_ast_vector Z3_API Z3_model_get_sort_universe(__in Z3_context c, __in Z3_model m, __in Z3_sort s);
    
    /**
       \brief The <tt>(_ as-array f)</tt> AST node is a construct for assigning interpretations for arrays in Z3.
       It is the array such that forall indices \c i we have that <tt>(select (_ as-array f) i)</tt> is equal to <tt>(f i)</tt>.
       This procedure returns Z3_TRUE if the \c a is an \c as-array AST node.

       Z3 current solvers have minimal support for \c as_array nodes. 

       \sa Z3_get_as_array_func_decl

       def_API('Z3_is_as_array', BOOL, (_in(CONTEXT), _in(AST)))
    */
    Z3_bool Z3_API Z3_is_as_array(__in Z3_context c, __in Z3_ast a);
    
    /**
       \brief Return the function declaration \c f associated with a <tt>(_ as_array f)</tt> node.
    
       \sa Z3_is_as_array

       def_API('Z3_get_as_array_func_decl', FUNC_DECL, (_in(CONTEXT), _in(AST)))
    */
    Z3_func_decl Z3_API Z3_get_as_array_func_decl(__in Z3_context c, __in Z3_ast a);

#ifdef Conly
    /**
       \brief Increment the reference counter of the given Z3_func_interp object.

       def_API('Z3_func_interp_inc_ref', VOID, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    void Z3_API Z3_func_interp_inc_ref(__in Z3_context c, __in Z3_func_interp f);

    /**
       \brief Decrement the reference counter of the given Z3_func_interp object.

       def_API('Z3_func_interp_dec_ref', VOID, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    void Z3_API Z3_func_interp_dec_ref(__in Z3_context c, __in Z3_func_interp f);
#endif

    /**
       \brief Return the number of entries in the given function interpretation.

       A function interpretation is represented as a finite map and an 'else' value.
       Each entry in the finite map represents the value of a function given a set of arguments.
       This procedure return the number of element in the finite map of \c f.

       def_API('Z3_func_interp_get_num_entries', UINT, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    unsigned Z3_API Z3_func_interp_get_num_entries(__in Z3_context c, __in Z3_func_interp f);

    /**
       \brief Return a "point" of the given function intepretation. It represents the
       value of \c f in a particular point.

       \pre i < Z3_func_interp_get_num_entries(c, f)
       
       \sa Z3_func_interp_get_num_entries

       def_API('Z3_func_interp_get_entry', FUNC_ENTRY, (_in(CONTEXT), _in(FUNC_INTERP), _in(UINT)))
    */
    Z3_func_entry Z3_API Z3_func_interp_get_entry(__in Z3_context c, __in Z3_func_interp f, unsigned i);
    
    /**
       \brief Return the 'else' value of the given function interpretation.

       A function interpretation is represented as a finite map and an 'else' value.
       This procedure returns the 'else' value.

       def_API('Z3_func_interp_get_else', AST, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    Z3_ast Z3_API Z3_func_interp_get_else(__in Z3_context c, __in Z3_func_interp f);
    
    /**
       \brief Return the arity (number of arguments) of the given function interpretation.

       def_API('Z3_func_interp_get_arity', UINT, (_in(CONTEXT), _in(FUNC_INTERP)))
    */
    unsigned Z3_API Z3_func_interp_get_arity(__in Z3_context c, __in Z3_func_interp f);

#ifdef Conly
    /**
       \brief Increment the reference counter of the given Z3_func_entry object.

       def_API('Z3_func_entry_inc_ref', VOID, (_in(CONTEXT), _in(FUNC_ENTRY)))
    */
    void Z3_API Z3_func_entry_inc_ref(__in Z3_context c, __in Z3_func_entry e);

    /**
       \brief Decrement the reference counter of the given Z3_func_entry object.

       def_API('Z3_func_entry_dec_ref', VOID, (_in(CONTEXT), _in(FUNC_ENTRY)))
    */
    void Z3_API Z3_func_entry_dec_ref(__in Z3_context c, __in Z3_func_entry e);
#endif
    
    /**
       \brief Return the value of this point. 
       
       A Z3_func_entry object represents an element in the finite map used to encode
       a function interpretation.
       
       \sa Z3_func_interp_get_entry

       def_API('Z3_func_entry_get_value', AST, (_in(CONTEXT), _in(FUNC_ENTRY)))
    */
    Z3_ast Z3_API Z3_func_entry_get_value(__in Z3_context c, __in Z3_func_entry e);

    /**
       \brief Return the number of arguments in a Z3_func_entry object.
       
       \sa Z3_func_interp_get_entry

       def_API('Z3_func_entry_get_num_args', UINT, (_in(CONTEXT), _in(FUNC_ENTRY)))
    */
    unsigned Z3_API Z3_func_entry_get_num_args(__in Z3_context c, __in Z3_func_entry e);
    
    /**
       \brief Return an argument of a Z3_func_entry object.

       \pre i < Z3_func_entry_get_num_args(c, e)

       \sa Z3_func_interp_get_entry
       
       def_API('Z3_func_entry_get_arg', AST, (_in(CONTEXT), _in(FUNC_ENTRY), _in(UINT)))
    */
    Z3_ast Z3_API Z3_func_entry_get_arg(__in Z3_context c, __in Z3_func_entry e, __in unsigned i);

    /*@}*/
#endif // CorML4

    /**
       @name Interaction logging.
    */
    /*@{*/
    
    /**
       \brief Log interaction to a file.
       
       extra_API('Z3_open_log', INT, (_in(STRING),))
    */
    Z3_bool Z3_API Z3_open_log(__in Z3_string filename);

    /**
       \brief Append user-defined string to interaction log.
       
       The interaction log is opened using Z3_open_log.
       It contains the formulas that are checked using Z3.
       You can use this command to append comments, for instance.

       extra_API('Z3_append_log', VOID, (_in(STRING),))
    */
    void Z3_API Z3_append_log(__in Z3_string string);

    /**
       \brief Close interaction log.

       extra_API('Z3_close_log', VOID, ())
    */
    void Z3_API Z3_close_log(void);

    /**
       \brief Enable/disable printing warning messages to the console.

       Warnings are printed after passing \c true, warning messages are
       suppressed after calling this method with \c false.       

       def_API('Z3_toggle_warning_messages', VOID, (_in(BOOL),))
    */
    void Z3_API Z3_toggle_warning_messages(__in Z3_bool enabled);

    /*@}*/

    /**
       @name String conversion
    */
    /*@{*/

    /**
       \brief Select mode for the format used for pretty-printing AST nodes.

       The default mode for pretty printing AST nodes is to produce
       SMT-LIB style output where common subexpressions are printed 
       at each occurrence. The mode is called Z3_PRINT_SMTLIB_FULL.
       To print shared common subexpressions only once, 
       use the Z3_PRINT_LOW_LEVEL mode.
       To print in way that conforms to SMT-LIB standards and uses let
       expressions to share common sub-expressions use Z3_PRINT_SMTLIB_COMPLIANT.

       \sa Z3_ast_to_string
       \sa Z3_pattern_to_string
       \sa Z3_func_decl_to_string

       def_API('Z3_set_ast_print_mode', VOID, (_in(CONTEXT), _in(PRINT_MODE)))
    */
    void Z3_API Z3_set_ast_print_mode(__in Z3_context c, __in Z3_ast_print_mode mode);

    /**
       \brief Convert the given AST node into a string.

       \conly \warning The result buffer is statically allocated by Z3. It will
       \conly be automatically deallocated when #Z3_del_context is invoked.
       \conly So, the buffer is invalidated in the next call to \c Z3_ast_to_string.
       \sa Z3_pattern_to_string
       \sa Z3_sort_to_string

       def_API('Z3_ast_to_string', STRING, (_in(CONTEXT), _in(AST)))
    */
    Z3_string Z3_API Z3_ast_to_string(__in Z3_context c, __in Z3_ast a);

    /**
      def_API('Z3_pattern_to_string', STRING, (_in(CONTEXT), _in(PATTERN)))
    */
    Z3_string Z3_API Z3_pattern_to_string(__in Z3_context c, __in Z3_pattern p);

    /**
      def_API('Z3_sort_to_string', STRING, (_in(CONTEXT), _in(SORT)))
    */
    Z3_string Z3_API Z3_sort_to_string(__in Z3_context c, __in Z3_sort s);
    
    /**
      def_API('Z3_func_decl_to_string', STRING, (_in(CONTEXT), _in(FUNC_DECL)))
    */
    Z3_string Z3_API Z3_func_decl_to_string(__in Z3_context c, __in Z3_func_decl d);

    /**
       \brief Convert the given model into a string.

       \conly \warning The result buffer is statically allocated by Z3. It will
       \conly be automatically deallocated when #Z3_del_context is invoked.
       \conly So, the buffer is invalidated in the next call to \c Z3_model_to_string.

       def_API('Z3_model_to_string', STRING, (_in(CONTEXT), _in(MODEL)))
    */
    Z3_string Z3_API Z3_model_to_string(__in Z3_context c, __in Z3_model m);

    /**
       \brief Convert the given benchmark into SMT-LIB formatted string.

       \conly \warning The result buffer is statically allocated by Z3. It will
       \conly be automatically deallocated when #Z3_del_context is invoked.
       \conly So, the buffer is invalidated in the next call to \c Z3_benchmark_to_smtlib_string.

       \param c - context.
       \param name - name of benchmark. The argument is optional.
       \param logic - the benchmark logic. 
       \param status - the status string (sat, unsat, or unknown)
       \param attributes - other attributes, such as source, difficulty or category.
       \param num_assumptions - number of assumptions.
       \param assumptions - auxiliary assumptions.
       \param formula - formula to be checked for consistency in conjunction with assumptions.

       def_API('Z3_benchmark_to_smtlib_string', STRING, (_in(CONTEXT), _in(STRING), _in(STRING), _in(STRING), _in(STRING), _in(UINT), _in_array(5, AST), _in(AST)))
    */
    Z3_string Z3_API Z3_benchmark_to_smtlib_string(__in   Z3_context c, 
                                                   __in Z3_string name,
                                                   __in Z3_string logic,
                                                   __in Z3_string status,
                                                   __in Z3_string attributes,
                                                   __in   unsigned num_assumptions,
                                                   __in_ecount(num_assumptions) Z3_ast const assumptions[],
                                                   __in   Z3_ast formula);

    /*@}*/

    /**
       @name Parser interface
    */
    /*@{*/

    /**
       \brief \mlh parse_smtlib2_string c str \endmlh
       Parse the given string using the SMT-LIB2 parser. 
              
       It returns a formula comprising of the conjunction of assertions in the scope
       (up to push/pop) at the end of the string.

       def_API('Z3_parse_smtlib2_string', AST, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
    */
    Z3_ast Z3_API Z3_parse_smtlib2_string(__in Z3_context c, 
                                          __in Z3_string str,
                                          __in unsigned num_sorts,
                                          __in_ecount(num_sorts) Z3_symbol const sort_names[],
                                          __in_ecount(num_sorts) Z3_sort const sorts[],
                                          __in unsigned num_decls,
                                          __in_ecount(num_decls) Z3_symbol const decl_names[],
                                          __in_ecount(num_decls) Z3_func_decl const decls[]);
    
    /**
       \brief Similar to #Z3_parse_smtlib2_string, but reads the benchmark from a file.

       def_API('Z3_parse_smtlib2_file', AST, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
    */
    Z3_ast Z3_API Z3_parse_smtlib2_file(__in Z3_context c, 
                                        __in Z3_string file_name,
                                        __in unsigned num_sorts,
                                        __in_ecount(num_sorts) Z3_symbol const sort_names[],
                                        __in_ecount(num_sorts) Z3_sort const sorts[],
                                        __in unsigned num_decls,
                                        __in_ecount(num_decls) Z3_symbol const decl_names[],
                                        __in_ecount(num_decls) Z3_func_decl const decls[]);

#ifdef ML4only
#include <mlx_parse_smtlib.idl>
#endif

    /**
       \mlonly {4 {L Low-level API}} \endmlonly
    */

    /**
       \brief \mlh parse_smtlib_string c str sort_names sorts decl_names decls \endmlh
       Parse the given string using the SMT-LIB parser. 
              
       The symbol table of the parser can be initialized using the given sorts and declarations. 
       The symbols in the arrays \c sort_names and \c decl_names don't need to match the names
       of the sorts and declarations in the arrays \c sorts and \c decls. This is an useful feature
       since we can use arbitrary names to reference sorts and declarations defined using the C API.

       The formulas, assumptions and declarations defined in \c str can be extracted using the functions:
       #Z3_get_smtlib_num_formulas, #Z3_get_smtlib_formula, #Z3_get_smtlib_num_assumptions, #Z3_get_smtlib_assumption, 
       #Z3_get_smtlib_num_decls, and #Z3_get_smtlib_decl.

       def_API('Z3_parse_smtlib_string', VOID, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
    */
    void Z3_API Z3_parse_smtlib_string(__in Z3_context c, 
                                       __in Z3_string str,
                                       __in unsigned num_sorts,
                                       __in_ecount(num_sorts) Z3_symbol const sort_names[],
                                       __in_ecount(num_sorts) Z3_sort const sorts[],
                                       __in unsigned num_decls,
                                       __in_ecount(num_decls) Z3_symbol const decl_names[],
                                       __in_ecount(num_decls) Z3_func_decl const decls[]                     
                                       );

    /**
       \brief Similar to #Z3_parse_smtlib_string, but reads the benchmark from a file.

       def_API('Z3_parse_smtlib_file', VOID, (_in(CONTEXT), _in(STRING), _in(UINT), _in_array(2, SYMBOL), _in_array(2, SORT), _in(UINT), _in_array(5, SYMBOL), _in_array(5, FUNC_DECL)))
    */
    void Z3_API Z3_parse_smtlib_file(__in Z3_context c, 
                                     __in Z3_string file_name,
                                     __in unsigned num_sorts,
                                     __in_ecount(num_sorts) Z3_symbol const sort_names[],
                                     __in_ecount(num_sorts) Z3_sort const sorts[],
                                     __in unsigned num_decls,
                                     __in_ecount(num_decls) Z3_symbol const decl_names[],
                                     __in_ecount(num_decls) Z3_func_decl const decls[]  
                                     );

    /**
       \brief Return the number of SMTLIB formulas parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.

       def_API('Z3_get_smtlib_num_formulas', UINT, (_in(CONTEXT), ))
    */
    unsigned Z3_API Z3_get_smtlib_num_formulas(__in Z3_context c);

    /**
       \brief \mlh get_smtlib_formula c i \endmlh
       Return the i-th formula parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.

       \pre i < Z3_get_smtlib_num_formulas(c)

       def_API('Z3_get_smtlib_formula', AST, (_in(CONTEXT), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_smtlib_formula(__in Z3_context c, __in unsigned i);

    /**
       \brief Return the number of SMTLIB assumptions parsed by #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.

       def_API('Z3_get_smtlib_num_assumptions', UINT, (_in(CONTEXT), ))
    */
    unsigned Z3_API Z3_get_smtlib_num_assumptions(__in Z3_context c);

    /**
       \brief \mlh get_smtlib_assumption c i \endmlh
       Return the i-th assumption parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.

       \pre i < Z3_get_smtlib_num_assumptions(c)

       def_API('Z3_get_smtlib_assumption', AST, (_in(CONTEXT), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_smtlib_assumption(__in Z3_context c, __in unsigned i);

    /**
       \brief Return the number of declarations parsed by #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.

       def_API('Z3_get_smtlib_num_decls', UINT, (_in(CONTEXT), ))
    */
    unsigned Z3_API Z3_get_smtlib_num_decls(__in Z3_context c);

    /**
       \brief \mlh get_smtlib_decl c i \endmlh
       Return the i-th declaration parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.

       \pre i < Z3_get_smtlib_num_decls(c)

       def_API('Z3_get_smtlib_decl', FUNC_DECL, (_in(CONTEXT), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_smtlib_decl(__in Z3_context c, __in unsigned i);

    /**
       \brief Return the number of sorts parsed by #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.

       def_API('Z3_get_smtlib_num_sorts', UINT, (_in(CONTEXT), ))
    */
    unsigned Z3_API Z3_get_smtlib_num_sorts(__in Z3_context c);

    /**
       \brief \mlh get_smtlib_sort c i \endmlh
       Return the i-th sort parsed by the last call to #Z3_parse_smtlib_string or #Z3_parse_smtlib_file.

       \pre i < Z3_get_smtlib_num_sorts(c)

       def_API('Z3_get_smtlib_sort', SORT, (_in(CONTEXT), _in(UINT)))
    */
    Z3_sort Z3_API Z3_get_smtlib_sort(__in Z3_context c, __in unsigned i);

BEGIN_MLAPI_EXCLUDE
    /**
       \brief \mlh get_smtlib_error c \endmlh
       Retrieve that last error message information generated from parsing.

       def_API('Z3_get_smtlib_error', STRING, (_in(CONTEXT), ))
    */
    Z3_string Z3_API Z3_get_smtlib_error(__in Z3_context c);
END_MLAPI_EXCLUDE

    /*@}*/

#ifdef CorML4
    /**
       @name Error Handling
    */
    /*@{*/

#ifndef SAFE_ERRORS
    /**
       \brief Return the error code for the last API call.
       
       A call to a Z3 function may return a non Z3_OK error code,
       when it is not used correctly.

       \sa Z3_set_error_handler

       def_API('Z3_get_error_code', UINT, (_in(CONTEXT), ))
    */
    Z3_error_code Z3_API Z3_get_error_code(__in Z3_context c);

    /**
       \brief Register a Z3 error handler.
       
       A call to a Z3 function may return a non Z3_OK error code, when
       it is not used correctly.  An error handler can be registered
       and will be called in this case.  \conly To disable the use of the
       error handler, simply register with \c h=NULL.

       \warning Log files, created using #Z3_open_log, may be potentially incomplete/incorrect if error handlers are used.

       \sa Z3_get_error_code
    */
    void Z3_API Z3_set_error_handler(__in Z3_context c, __in Z3_error_handler h);
#endif
    
    /**
       \brief Set an error.

       def_API('Z3_set_error', VOID, (_in(CONTEXT), _in(ERROR_CODE)))
    */
    void Z3_API Z3_set_error(__in Z3_context c, __in Z3_error_code e);

#ifdef Conly
    /**
       \brief Return a string describing the given error code.
       
       \deprecated Use #Z3_get_error_msg_ex instead.

       def_API('Z3_get_error_msg', STRING, (_in(ERROR_CODE),))
    */
    Z3_string Z3_API Z3_get_error_msg(__in Z3_error_code err);
#endif
    
BEGIN_MLAPI_EXCLUDE
    /**
       \brief Return a string describing the given error code.

       def_API('Z3_get_error_msg_ex', STRING, (_in(CONTEXT), _in(ERROR_CODE)))
    */
    Z3_string Z3_API Z3_get_error_msg_ex(__in Z3_context c, __in Z3_error_code err);
END_MLAPI_EXCLUDE
#ifdef ML4only
#include <mlx_get_error_msg.idl>
#endif


    /*@}*/
#endif

    /**
       @name Miscellaneous
    */
    /*@{*/
    
    /**
       \brief Return Z3 version number information.

       def_API('Z3_get_version', VOID, (_out(UINT), _out(UINT), _out(UINT), _out(UINT)))
    */
    void Z3_API Z3_get_version(__out unsigned * major, __out unsigned * minor, __out unsigned * build_number, __out unsigned * revision_number);
 
    /**
       \brief Enable tracing messages tagged as \c tag when Z3 is compiled in debug mode.
       It is a NOOP otherwise

       def_API('Z3_enable_trace', VOID, (_in(STRING),))
    */
    void Z3_API Z3_enable_trace(__in Z3_string tag);

    /**
       \brief Disable tracing messages tagged as \c tag when Z3 is compiled in debug mode.
       It is a NOOP otherwise

       def_API('Z3_disable_trace', VOID, (_in(STRING),))
    */
    void Z3_API Z3_disable_trace(__in Z3_string tag);
 
#ifdef CorML3
    /**
       \brief Reset all allocated resources. 

       Use this facility on out-of memory errors. 
       It allows discharging the previous state and resuming afresh.
       Any pointers previously returned by the API
       become invalid.

       def_API('Z3_reset_memory', VOID, ())
    */
    void Z3_API Z3_reset_memory(void);
#endif

#ifdef CorML3
    /**
       \brief Destroy all allocated resources.

       Any pointers previously returned by the API become invalid.
       Can be used for memory leak detection.

       def_API('Z3_finalize_memory', VOID, ())
    */
    void Z3_API Z3_finalize_memory(void);
#endif

    /*@}*/

#ifdef CorML3
    /**
        @name External Theory Plugins
    */
    /*@{*/
    
#ifdef Conly

    //
    // callbacks and void* don't work with CAMLIDL.
    // 
    typedef Z3_bool Z3_reduce_eq_callback_fptr(__in Z3_theory t, __in Z3_ast a, __in Z3_ast b, __out Z3_ast * r);

    typedef Z3_bool Z3_reduce_app_callback_fptr(__in Z3_theory, __in Z3_func_decl, __in unsigned, __in Z3_ast const [], __out Z3_ast *);

    typedef Z3_bool Z3_reduce_distinct_callback_fptr(__in Z3_theory, __in unsigned, __in Z3_ast const [], __out Z3_ast *);

    typedef void Z3_theory_callback_fptr(__in Z3_theory t);
    
    typedef Z3_bool Z3_theory_final_check_callback_fptr(__in Z3_theory);
    
    typedef void Z3_theory_ast_callback_fptr(__in Z3_theory, __in Z3_ast);
    
    typedef void Z3_theory_ast_bool_callback_fptr(__in Z3_theory, __in Z3_ast, __in Z3_bool);
    
    typedef void Z3_theory_ast_ast_callback_fptr(__in Z3_theory, __in Z3_ast, __in Z3_ast);

#endif

#ifdef Conly
    /**
       \brief Create a new user defined theory. The new theory will be identified by the name \c th_name.
       A theory must be created before asserting any assertion to the given context.
       \conly Return \c NULL in case of failure.

       \conly \c data is a pointer to an external data-structure that may be used to store
       \conly theory specific additional data.
    */
    Z3_theory Z3_API Z3_mk_theory(__in Z3_context c, __in Z3_string th_name, __in Z3_theory_data data);

    /**
       \brief Return a pointer to the external data-structure supplied to the function #Z3_mk_theory.

       \see Z3_mk_theory
    */
    Z3_theory_data Z3_API Z3_theory_get_ext_data(__in Z3_theory t);
#endif

    /**
       \brief Create an interpreted theory sort.
    */
    Z3_sort Z3_API Z3_theory_mk_sort(__in Z3_context c, __in Z3_theory t, __in Z3_symbol s);
    
    /**
       \brief Create an interpreted theory constant value. Values are assumed to be different from each other.
    */
    Z3_ast Z3_API Z3_theory_mk_value(__in Z3_context c, __in Z3_theory t, __in Z3_symbol n, __in Z3_sort s);

    /**
       \brief Create an interpreted constant for the given theory.
    */
    Z3_ast Z3_API Z3_theory_mk_constant(__in Z3_context c, __in Z3_theory t, __in Z3_symbol n, __in Z3_sort s);
    
    /**
       \brief Create an interpreted function declaration for the given theory.
    */
    Z3_func_decl Z3_API Z3_theory_mk_func_decl(__in Z3_context c, __in Z3_theory t, __in Z3_symbol n,
                                               __in unsigned domain_size, __in_ecount(domain_size) Z3_sort const domain[],
                                               __in Z3_sort range);

    /**
       \brief Return the context where the given theory is installed.
    */
    Z3_context Z3_API Z3_theory_get_context(__in Z3_theory t);


#ifdef Conly
    /**
       \brief Set a callback that is invoked when theory \c t is deleted.
       This callback should be used to delete external data-structures associated with the given theory.

       \conly The callback has the form <tt>f(t)</tt>, where
       \conly - \c t is the given theory
       
       \see Z3_mk_theory 
       \conly \see Z3_theory_get_ext_data
    */
    void Z3_API Z3_set_delete_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
    
    /**
       \brief Set a callback for simplifying operators of the given theory.
       The callback \c f is invoked by Z3's simplifier.

       \conly It is of the form <tt>f(t, d, n, args, r)</tt>, where:
       \conly   - \c t is the given theory
       \conly   - \c d is the declaration of the theory operator
       \conly   - \c n is the number of arguments in the array \c args
       \conly   - \c args are arguments for the theory operator
       \conly   - \c r should contain the result: an expression equivalent to <tt>d(args[0], ..., args[n-1])</tt>.

       \conly If <tt>f(t, d, n, args, r)</tt> returns false, then \c r is ignored, and Z3 assumes that no simplification was performed.
    */
    void Z3_API Z3_set_reduce_app_callback(__in Z3_theory t, __in Z3_reduce_app_callback_fptr f);
    
    /**
       \brief Set a callback for simplifying the atom <tt>s_1 = s_2</tt>, when the
       sort of \c s_1 and \c s_2 is an interpreted sort of the given theory.
       The callback \c f is invoked by Z3's simplifier.
       
       \conly It has the form <tt>f(t, s_1, s_2, r)</tt>, where:
       \conly   - \c t is the given theory
       \conly   - \c s_1 is the left-hand-side
       \conly   - \c s_2 is the right-hand-side
       \conly   - \c r should contain the result: an expression equivalent to <tt>s_1 = s_2</tt>.
         
       \conly If <tt>f(t, s_1, s_2, r)</tt> returns false, then \c r is ignored, and Z3 assumes that no simplification was performed.
    */
    void Z3_API Z3_set_reduce_eq_callback(__in Z3_theory t, __in Z3_reduce_eq_callback_fptr f);

    /**
       \brief Set a callback for simplifying the atom <tt>distinct(s_1, ..., s_n)</tt>, when the
       sort of \c s_1, ..., \c s_n is an interpreted sort of the given theory.
       The callback \c f is invoked by Z3's simplifier.
       
       \conly It has the form <tt>f(t, n, args, r)</tt>, where:
       \conly   - \c t is the given theory
       \conly   - \c n is the number of arguments in the array \c args
       \conly   - \c args are arguments for distinct.
       \conly   - \c r should contain the result: an expression equivalent to <tt>distinct(s_1, ..., s_n)</tt>.
         
       \conly If <tt>f(t, n, args, r)</tt> returns false, then \c r is ignored, and Z3 assumes that no simplification was performed.
    */
    void Z3_API Z3_set_reduce_distinct_callback(__in Z3_theory t, __in Z3_reduce_distinct_callback_fptr f);
    
    /**
       \brief Set a callback that is invoked when a theory application
       is finally added into the logical context. Note that, not every
       application contained in an asserted expression is actually
       added into the logical context because it may be simplified
       during a preprocessing step.
    
       \conly The callback has the form <tt>f(t, n)</tt>, where
       \conly - \c t is the given theory
       
       \conly - \c n is a theory application, that is, an expression of the form <tt>g(...)</tt> where \c g is a theory operator.

       \remark An expression \c n added to the logical context at search level \c n,
       will remain in the logical context until this level is backtracked.
    */
    void Z3_API Z3_set_new_app_callback(__in Z3_theory t, __in Z3_theory_ast_callback_fptr f);

    /**
       \brief Set a callback that is invoked when an expression of
       sort \c s, where \c s is an interpreted sort of the theory \c
       t, is finally added into the logical context. Note that, not
       every expression contained in an asserted expression is
       actually added into the logical context because it may be
       simplified during a preprocessing step.

       \conly The callback has the form <tt>f(t, n)</tt>, where
       \conly - \c t is the given theory
       
       \conly - \c n is an expression of sort \c s, where \c s is an interpreted sort of \c t.

       \remark An expression \c n added to the logical context at search level \c n,
       will remain in the logical context until this level is backtracked.
    */
    void Z3_API Z3_set_new_elem_callback(__in Z3_theory t, __in Z3_theory_ast_callback_fptr f);

    /**
       \brief Set a callback that is invoked when Z3 starts searching for a
       satisfying assignment.
       
       \conly The callback has the form <tt>f(t)</tt>, where
       \conly - \c t is the given theory
    */
    void Z3_API Z3_set_init_search_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
        
    /**
       \brief Set a callback that is invoked when Z3 creates a
       case-split (aka backtracking point). 

       When a case-split is created we say the search level is increased.
       
       \conly The callback has the form <tt>f(t)</tt>, where
       \conly - \c t is the given theory
    */
    void Z3_API Z3_set_push_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);
 
    /**
       \brief Set a callback that is invoked when Z3 backtracks a
       case-split.

       When a case-split is backtracked we say the search level is decreased.
       
       \conly The callback has the form <tt>f(t)</tt>, where
       \conly - \c t is the given theory
    */
    void Z3_API Z3_set_pop_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);

    /**
       \brief Set a callback that is invoked when Z3 restarts the
       search for a satisfying assignment.
       
       \conly The callback has the form <tt>f(t)</tt>, where
       \conly - \c t is the given theory
    */
    void Z3_API Z3_set_restart_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);

    /**
       \brief Set a callback that is invoked when the logical context
       is reset by the user. This callback is useful for reseting any
       data-structure maintained by the user theory solver.
       
       \conly The callback has the form <tt>f(t)</tt>, where
       \conly - \c t is the given theory
    */
    void Z3_API Z3_set_reset_callback(__in Z3_theory t, __in Z3_theory_callback_fptr f);

    /**
       \brief Set a callback that is invoked before Z3 starts building a model.
       A theory may use this callback to perform expensive operations.

       \conly The callback has the form <tt>f(t)</tt>, where
       \conly - \c t is the given theory

       If the theory returns \mlonly \c false, \endmlonly \conly \c Z3_false,
       Z3 will assume that theory is giving up,
       and it will assume that it was not possible to decide if the asserted constraints
       are satisfiable or not.
    */
    void Z3_API Z3_set_final_check_callback(__in Z3_theory t, __in Z3_theory_final_check_callback_fptr f);

    /**
       \brief Set a callback that is invoked when an equality <tt>s_1 = s_2</tt>
       is found by the logical context.

       \conly The callback has the form <tt>f(t, s_1, s_2)</tt>, where:
       \conly   - \c t is the given theory
       \conly   - \c s_1 is the left-hand-side
       \conly   - \c s_2 is the right-hand-side
    */
    void Z3_API Z3_set_new_eq_callback(__in Z3_theory t, __in Z3_theory_ast_ast_callback_fptr f);

    /**
       \brief Set a callback that is invoked when a disequality <tt>s_1 != s_2</tt>
       is found by the logical context.

       \conly The callback has the form <tt>f(t, s_1, s_2)</tt>, where:
       \conly   - \c t is the given theory
       \conly   - \c s_1 is the left-hand-side
       \conly   - \c s_2 is the right-hand-side
    */
    void Z3_API Z3_set_new_diseq_callback(__in Z3_theory t, __in Z3_theory_ast_ast_callback_fptr f);

    /**
       \brief Set a callback that is invoked when a theory predicate is assigned to true/false by Z3.
       
       \conly The callback has the form <tt>f(t, p, v)</tt>, where:
       \conly   - \c t is the given theory
       \conly   - \c p is the assigned predicate.
       \conly   - \c v is the value (true/false) assigned to \c p.
    */
    void Z3_API Z3_set_new_assignment_callback(__in Z3_theory t, __in Z3_theory_ast_bool_callback_fptr f);

    /**
       \brief Set a callback that is invoked when an expression is
       marked as relevant during the search. This callback is only
       invoked when relevancy propagation is enabled.
       
       \conly The callback has the form <tt>f(t, n)</tt>, where:
       \conly   - \c t is the given theory
       \conly   - \c n is the relevant expression
    */
    void Z3_API Z3_set_new_relevant_callback(__in Z3_theory t, __in Z3_theory_ast_callback_fptr f);

#endif

    /**
       \brief Assert a theory axiom/lemmas during the search.
       
       An axiom added at search level \c n will remain in the logical context until 
       level \c n is backtracked. 

       The callbacks for push (#Z3_set_push_callback) and pop
       (#Z3_set_pop_callback) can be used to track when the search
       level is increased (i.e., new case-split) and decreased (i.e.,
       case-split is backtracked).
       
       Z3 tracks the theory axioms asserted. So, multiple assertions of the same axiom are
       ignored.
    */
    void Z3_API Z3_theory_assert_axiom(__in Z3_theory t, __in Z3_ast ax);

    /**
       \brief Inform to the logical context that \c lhs and \c rhs have the same interpretation
       in the model being built by theory \c t. If lhs = rhs is inconsistent with other theories,
       then the logical context will backtrack.

       For more information, see the paper "Model-Based Theory Combination" in the Z3 website.
    */
    void Z3_API Z3_theory_assume_eq(__in Z3_theory t, __in Z3_ast lhs, __in Z3_ast rhs);

    /**
       \brief Enable/disable the simplification of theory axioms asserted using #Z3_theory_assert_axiom.
       By default, the simplification of theory specific operators is disabled. 
       That is, the reduce theory callbacks are not invoked for theory axioms.
       The default behavior is useful when asserting axioms stating properties of theory operators.
    */
    void Z3_API Z3_theory_enable_axiom_simplification(__in Z3_theory t, __in Z3_bool flag);

    /**
       \brief Return the root of the equivalence class containing \c n.
    */
    Z3_ast Z3_API Z3_theory_get_eqc_root(__in Z3_theory t, __in Z3_ast n);
    
    /**
       \brief Return the next element in the equivalence class containing \c n.

       The elements in an equivalence class are organized in a circular list.
       You can traverse the list by calling this function multiple times 
       using the result from the previous call. This is illustrated in the
       code snippet below.
       \code
           Z3_ast curr = n;
           do
             curr = Z3_theory_get_eqc_next(theory, curr);
           while (curr != n);
       \endcode
    */
    Z3_ast Z3_API Z3_theory_get_eqc_next(__in Z3_theory t, __in Z3_ast n);

    /**
       \brief Return the number of parents of \c n that are operators of the given theory. 
    */
    unsigned Z3_API Z3_theory_get_num_parents(__in Z3_theory t, __in Z3_ast n);
    
    /**
       \brief Return the i-th parent of \c n. 
       See #Z3_theory_get_num_parents. 
    */
    Z3_ast Z3_API Z3_theory_get_parent(__in Z3_theory t, __in Z3_ast n, __in unsigned i);

    /**
       \brief Return \c Z3_TRUE if \c n is an interpreted theory value.
    */
    Z3_bool Z3_API Z3_theory_is_value(__in Z3_theory t, __in Z3_ast n);

    /**
       \brief Return \c Z3_TRUE if \c d is an interpreted theory declaration.
    */
    Z3_bool Z3_API Z3_theory_is_decl(__in Z3_theory t, __in Z3_func_decl d);
    
    /**
       \brief Return the number of expressions of the given theory in
       the logical context. These are the expressions notified using the
       callback #Z3_set_new_elem_callback.
    */
    unsigned Z3_API Z3_theory_get_num_elems(__in Z3_theory t);
    
    /**
       \brief Return the i-th elem of the given theory in the logical context.
       
       \see Z3_theory_get_num_elems
    */
    Z3_ast Z3_API Z3_theory_get_elem(__in Z3_theory t, __in unsigned i);

    /**
       \brief Return the number of theory applications in the logical
       context. These are the expressions notified using the callback
       #Z3_set_new_app_callback.
    */
    unsigned Z3_API Z3_theory_get_num_apps(__in Z3_theory t);
    
    /**
       \brief Return the i-th application of the given theory in the logical context.
       
       \see Z3_theory_get_num_apps
    */
    Z3_ast Z3_API Z3_theory_get_app(__in Z3_theory t, __in unsigned i);

    /*@}*/

#endif

#ifdef CorML4
    /**
        @name Fixedpoint facilities
    */
    /*@{*/

    /**
       \brief Create a new fixedpoint context. 
       
       \conly \remark User must use #Z3_fixedpoint_inc_ref and #Z3_fixedpoint_dec_ref to manage fixedpoint objects.
       \conly Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_fixedpoint', FIXEDPOINT, (_in(CONTEXT), ))
    */
    Z3_fixedpoint Z3_API Z3_mk_fixedpoint(__in Z3_context c);

#ifdef Conly
    /**
       \brief Increment the reference counter of the given fixedpoint context
       
       def_API('Z3_fixedpoint_inc_ref', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
    */
    void Z3_API Z3_fixedpoint_inc_ref(__in Z3_context c,__in Z3_fixedpoint d);

    /**
       \brief Decrement the reference counter of the given fixedpoint context.

       def_API('Z3_fixedpoint_dec_ref', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
    */
    void Z3_API Z3_fixedpoint_dec_ref(__in Z3_context c,__in Z3_fixedpoint d);
#endif

    /**
       \brief Add a universal Horn clause as a named rule.
       The \c horn_rule should be of the form:
 
       \code
           horn_rule ::= (forall (bound-vars) horn_rule)
                      |  (=> atoms horn_rule)
                      |  atom
       \endcode

       def_API('Z3_fixedpoint_add_rule', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST), _in(SYMBOL)))
    */
    void Z3_API Z3_fixedpoint_add_rule(__in Z3_context c,__in Z3_fixedpoint d, __in Z3_ast rule, __in Z3_symbol name);

    /**
       \brief Add a Database fact. 
             
       \param c - context
       \param d - fixed point context
       \param r - relation signature for the row.
       \param num_args - number of columns for the given row. 
       \param args - array of the row elements.

       The number of arguments \c num_args should be equal to the number 
       of sorts in the domain of \c r. Each sort in the domain should be an integral
      (bit-vector, Boolean or or finite domain sort).

       The call has the same effect as adding a rule where \c r is applied to the arguments.

       def_API('Z3_fixedpoint_add_fact', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL), _in(UINT), _in_array(3, UINT)))
    */
    void Z3_API Z3_fixedpoint_add_fact(__in Z3_context c,__in Z3_fixedpoint d, 
                                       __in Z3_func_decl r, 
                                       __in unsigned num_args, __in_ecount(num_args) unsigned args[]);

    /**
       \brief Assert a constraint to the fixedpoint context.

       The constraints are used as background axioms when the fixedpoint engine uses the PDR mode.
       They are ignored for standard Datalog mode.

       def_API('Z3_fixedpoint_assert', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST)))
    */
    void Z3_API Z3_fixedpoint_assert(__in Z3_context c,__in Z3_fixedpoint d, __in Z3_ast axiom);

    /**
        \brief Pose a query against the asserted rules.

        \code
           query ::= (exists (bound-vars) query)
                 |  literals 
        \endcode

        query returns 
        - Z3_L_FALSE if the query is unsatisfiable.
        - Z3_L_TRUE if the query is satisfiable. Obtain the answer by calling #Z3_fixedpoint_get_answer.
        - Z3_L_UNDEF if the query was interrupted, timed out or otherwise failed.

        def_API('Z3_fixedpoint_query', INT, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST)))
    */
    Z3_lbool Z3_API Z3_fixedpoint_query(__in Z3_context c,__in Z3_fixedpoint d, __in Z3_ast query);

    /**
        \brief Pose multiple queries against the asserted rules.

        The queries are encoded as relations (function declarations).
         
        query returns 
        - Z3_L_FALSE if the query is unsatisfiable.
        - Z3_L_TRUE if the query is satisfiable. Obtain the answer by calling #Z3_fixedpoint_get_answer.
        - Z3_L_UNDEF if the query was interrupted, timed out or otherwise failed.

        def_API('Z3_fixedpoint_query_relations', INT, (_in(CONTEXT), _in(FIXEDPOINT), _in(UINT), _in_array(2, FUNC_DECL)))
    */
    Z3_lbool Z3_API Z3_fixedpoint_query_relations(
        __in Z3_context c,__in Z3_fixedpoint d, 
        __in unsigned num_relations, __in_ecount(num_relations) Z3_func_decl const relations[]);

    /**
       \brief Retrieve a formula that encodes satisfying answers to the query.

       
       When used in Datalog mode, the returned answer is a disjunction of conjuncts.
       Each conjunct encodes values of the bound variables of the query that are satisfied.
       In PDR mode, the returned answer is a single conjunction.

       When used in Datalog mode the previous call to Z3_fixedpoint_query must have returned Z3_L_TRUE.
       When used with the PDR engine, the previous call must have been either Z3_L_TRUE or Z3_L_FALSE.

       def_API('Z3_fixedpoint_get_answer', AST, (_in(CONTEXT), _in(FIXEDPOINT)))
    */    
    Z3_ast Z3_API Z3_fixedpoint_get_answer(__in Z3_context c,__in Z3_fixedpoint d);

    /**
       \brief Retrieve a string that describes the last status returned by #Z3_fixedpoint_query.

       Use this method when #Z3_fixedpoint_query returns Z3_L_UNDEF.
       
       def_API('Z3_fixedpoint_get_reason_unknown', STRING, (_in(CONTEXT), _in(FIXEDPOINT) ))
    */
    Z3_string Z3_API Z3_fixedpoint_get_reason_unknown(__in Z3_context c,__in Z3_fixedpoint d);

    /**
       \brief Update a named rule. 
       A rule with the same name must have been previously created.

       def_API('Z3_fixedpoint_update_rule', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(AST), _in(SYMBOL)))
    */
    void Z3_API Z3_fixedpoint_update_rule(__in Z3_context c, __in Z3_fixedpoint d, __in Z3_ast a, __in Z3_symbol name);
    
    /**
       \brief Query the PDR engine for the maximal levels properties are known about predicate.

       This call retrieves the maximal number of relevant unfoldings 
       of \c pred with respect to the current exploration state.
       Note: this functionality is PDR specific.
    
       def_API('Z3_fixedpoint_get_num_levels', UINT, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL)))
    */
    unsigned Z3_API Z3_fixedpoint_get_num_levels(Z3_context c, Z3_fixedpoint d, Z3_func_decl pred);

    /**
       Retrieve the current cover of \c pred up to \c level unfoldings.
       Return just the delta that is known at \c level. To
       obtain the full set of properties of \c pred one should query
       at \c level+1 , \c level+2 etc, and include \c level=-1.

       Note: this functionality is PDR specific.

       def_API('Z3_fixedpoint_get_cover_delta', AST, (_in(CONTEXT), _in(FIXEDPOINT), _in(INT), _in(FUNC_DECL)))
     */    
    Z3_ast Z3_API Z3_fixedpoint_get_cover_delta(Z3_context c, Z3_fixedpoint d, int level, Z3_func_decl pred);

    /**
       \brief Add property about the predicate \c pred.
       Add a property of predicate \c pred at \c level. 
       It gets pushed forward when possible.

       Note: level = -1 is treated as the fixedpoint. So passing -1 for the \c level
       means that the property is true of the fixed-point unfolding with respect to \c pred.

       Note: this functionality is PDR specific.

       def_API('Z3_fixedpoint_add_cover', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(INT), _in(FUNC_DECL), _in(AST)))
    */
    void Z3_API Z3_fixedpoint_add_cover(Z3_context c, Z3_fixedpoint d, int level, Z3_func_decl pred, Z3_ast property);

    /**
       \brief Retrieve statistics information from the last call to #Z3_fixedpoint_query.

       def_API('Z3_fixedpoint_get_statistics', STATS, (_in(CONTEXT), _in(FIXEDPOINT)))
    */
    Z3_stats Z3_API Z3_fixedpoint_get_statistics(__in Z3_context c,__in Z3_fixedpoint d);

    /**
       \brief Register relation as Fixedpoint defined.
       Fixedpoint defined relations have least-fixedpoint semantics.
       For example, the relation is empty if it does not occur
       in a head or a fact.
       
       def_API('Z3_fixedpoint_register_relation', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL)))
    */
    void Z3_API Z3_fixedpoint_register_relation(__in Z3_context c,__in Z3_fixedpoint d, __in Z3_func_decl f);

    /**
       \brief Configure the predicate representation.

       It sets the predicate to use a set of domains given by the list of symbols.
       The domains given by the list of symbols must belong to a set
       of built-in domains.

       def_API('Z3_fixedpoint_set_predicate_representation', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(FUNC_DECL), _in(UINT), _in_array(3, SYMBOL)))
    */
    void Z3_API Z3_fixedpoint_set_predicate_representation(
        __in Z3_context c,
        __in Z3_fixedpoint d, 
        __in Z3_func_decl f, 
        __in unsigned num_relations, 
        __in_ecount(num_relations) Z3_symbol const relation_kinds[]);
                
    /**
       \brief Retrieve set of rules from fixedpoint context.

       def_API('Z3_fixedpoint_get_rules', AST_VECTOR, (_in(CONTEXT),_in(FIXEDPOINT)))
     */
    Z3_ast_vector Z3_API Z3_fixedpoint_get_rules(
        __in Z3_context c,
        __in Z3_fixedpoint f);

    /**
       \brief Retrieve set of background assertions from fixedpoint context.

       def_API('Z3_fixedpoint_get_assertions', AST_VECTOR, (_in(CONTEXT),_in(FIXEDPOINT)))
     */
    Z3_ast_vector Z3_API Z3_fixedpoint_get_assertions(
        __in Z3_context c,
        __in Z3_fixedpoint f);

    /**
       \brief Set parameters on fixedpoint context.       

       def_API('Z3_fixedpoint_set_params', VOID, (_in(CONTEXT), _in(FIXEDPOINT), _in(PARAMS)))
    */
    void Z3_API Z3_fixedpoint_set_params(__in Z3_context c, __in Z3_fixedpoint f, __in Z3_params p);

    /**
       \brief Return a string describing all fixedpoint available parameters.
       
       def_API('Z3_fixedpoint_get_help', STRING, (_in(CONTEXT), _in(FIXEDPOINT)))
    */
    Z3_string Z3_API Z3_fixedpoint_get_help(__in Z3_context c, __in Z3_fixedpoint f);

    /**
       \brief Return the parameter description set for the given fixedpoint object.

       def_API('Z3_fixedpoint_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(FIXEDPOINT)))
    */
    Z3_param_descrs Z3_API Z3_fixedpoint_get_param_descrs(__in Z3_context c, __in Z3_fixedpoint f);

    /**
       \brief Print the current rules and background axioms as a string.
       \param c - context.
       \param f - fixedpoint context.
       \param num_queries - number of additional queries to print.
       \param queries - additional queries.

       def_API('Z3_fixedpoint_to_string', STRING, (_in(CONTEXT), _in(FIXEDPOINT), _in(UINT), _in_array(2, AST)))
    */
    Z3_string Z3_API Z3_fixedpoint_to_string(
        __in Z3_context c, 
        __in Z3_fixedpoint f,
        __in unsigned num_queries,
        __in_ecount(num_queries) Z3_ast queries[]);

    /**
       \brief Parse an SMT-LIB2 string with fixedpoint rules. 
       Add the rules to the current fixedpoint context. 
       Return the set of queries in the string.

       \param c - context.
       \param f - fixedpoint context.
       \param s - string containing SMT2 specification.       

       def_API('Z3_fixedpoint_from_string', AST_VECTOR, (_in(CONTEXT), _in(FIXEDPOINT), _in(STRING)))
    */
    Z3_ast_vector Z3_API Z3_fixedpoint_from_string(
        __in Z3_context c, 
        __in Z3_fixedpoint f,
        __in Z3_string s);

    /**
       \brief Parse an SMT-LIB2 file with fixedpoint rules. 
       Add the rules to the current fixedpoint context. 
       Return the set of queries in the file.

       \param c - context.
       \param f - fixedpoint context.
       \param s - string containing SMT2 specification.       

       def_API('Z3_fixedpoint_from_file', AST_VECTOR, (_in(CONTEXT), _in(FIXEDPOINT), _in(STRING)))
    */
    Z3_ast_vector Z3_API Z3_fixedpoint_from_file(
        __in Z3_context c, 
        __in Z3_fixedpoint f,
        __in Z3_string s);

    /**
       \brief Create a backtracking point.
       
       The fixedpoint solver contains a set of rules, added facts and assertions.
       The set of rules, facts and assertions are restored upon calling #Z3_fixedpoint_pop.

       \sa Z3_fixedpoint_pop

       def_API('Z3_fixedpoint_push', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
    */
    void Z3_API Z3_fixedpoint_push(Z3_context c,Z3_fixedpoint d);

    /**
       \brief Backtrack one backtracking point.
       
       \sa Z3_fixedpoint_push

       \pre The number of calls to pop cannot exceed calls to push.

       def_API('Z3_fixedpoint_pop', VOID, (_in(CONTEXT), _in(FIXEDPOINT)))
    */
    void Z3_API Z3_fixedpoint_pop(Z3_context c,Z3_fixedpoint d);

#ifdef Conly

    /**
         \brief The following utilities allows adding user-defined domains.
    */

    typedef void Z3_fixedpoint_reduce_assign_callback_fptr(
        __in void*, __in Z3_func_decl, 
        __in unsigned, __in Z3_ast const [], 
        __in unsigned, __in Z3_ast const []); 

    typedef void Z3_fixedpoint_reduce_app_callback_fptr(
        __in void*, __in Z3_func_decl, 
        __in unsigned, __in Z3_ast const [], 
        __out Z3_ast*);
        

    /**
       \brief Initialize the context with a user-defined state.   
    */
    void Z3_API Z3_fixedpoint_init(__in Z3_context c,__in Z3_fixedpoint d, __in void* state);

    /**
       \brief Register a callback to destructive updates.
       
       Registers are identified with terms encoded as fresh constants,          
    */
    void Z3_API Z3_fixedpoint_set_reduce_assign_callback(
        __in Z3_context c,__in Z3_fixedpoint d, __in Z3_fixedpoint_reduce_assign_callback_fptr cb);
    
    /**
       \brief Register a callback for buildling terms based on 
       the relational operators.
    */
    void Z3_API Z3_fixedpoint_set_reduce_app_callback(
        __in Z3_context c,__in Z3_fixedpoint d, __in Z3_fixedpoint_reduce_app_callback_fptr cb);
        
#endif
#endif



#ifdef CorML4
    /**
        @name Optimize facilities
    */
    /*@{*/

    /**
       \brief Create a new optimize context. 
       
       \conly \remark User must use #Z3_optimize_inc_ref and #Z3_optimize_dec_ref to manage optimize objects.
       \conly Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_optimize', OPTIMIZE, (_in(CONTEXT), ))
    */
    Z3_optimize Z3_API Z3_mk_optimize(__in Z3_context c);

#ifdef Conly
    /**
       \brief Increment the reference counter of the given optimize context
       
       def_API('Z3_optimize_inc_ref', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    void Z3_API Z3_optimize_inc_ref(__in Z3_context c,__in Z3_optimize d);

    /**
       \brief Decrement the reference counter of the given optimize context.

       def_API('Z3_optimize_dec_ref', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    void Z3_API Z3_optimize_dec_ref(__in Z3_context c,__in Z3_optimize d);
#endif

    /**
       \brief Assert hard constraint to the optimization context.
       
       def_API('Z3_optimize_assert', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
    */
    void Z3_API Z3_optimize_assert(Z3_context c, Z3_optimize o, Z3_ast a);


    /**
       \brief Assert soft constraint to the optimization context.
       \param c - context
       \param o - optimization context
       \param a - formula
       \param weight - a positive weight, penalty for violating soft constraint
       \param id - optional identifier to group soft constraints

       def_API('Z3_optimize_assert_soft', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST), _in(STRING), _in(SYMBOL)))
    */
    unsigned Z3_API Z3_optimize_assert_soft(Z3_context c, Z3_optimize o, Z3_ast a, Z3_string weight, Z3_symbol id);


    /**
       \brief Add a maximization constraint.
       \param c - context
       \param o - optimization context
       \param a - arithmetical term       
       def_API('Z3_optimize_maximize', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
    */
    unsigned Z3_API Z3_optimize_maximize(Z3_context c, Z3_optimize o, Z3_ast t);

    /**
       \brief Add a minimization constraint.
       \param c - context
       \param o - optimization context
       \param a - arithmetical term   
    
       def_API('Z3_optimize_minimize', UINT, (_in(CONTEXT), _in(OPTIMIZE), _in(AST)))
    */
    unsigned Z3_API Z3_optimize_minimize(Z3_context c, Z3_optimize o, Z3_ast t);


    /**
       \brief Create a backtracking point.
       
       The optimize solver contains a set of rules, added facts and assertions.
       The set of rules, facts and assertions are restored upon calling #Z3_optimize_pop.

       \sa Z3_optimize_pop

       def_API('Z3_optimize_push', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    void Z3_API Z3_optimize_push(Z3_context c,Z3_optimize d);

    /**
       \brief Backtrack one level.
       
       \sa Z3_optimize_push

       \pre The number of calls to pop cannot exceed calls to push.

       def_API('Z3_optimize_pop', VOID, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    void Z3_API Z3_optimize_pop(Z3_context c,Z3_optimize d);

    /**
       \brief Check consistency and produce optimal values.
       \param c - context
       \param o - optimization context
       
       def_API('Z3_optimize_check', INT, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    Z3_lbool Z3_API Z3_optimize_check(Z3_context c, Z3_optimize o);


    /**
       \brief Retrieve the model for the last #Z3_optimize_check

       The error handler is invoked if a model is not available because 
       the commands above were not invoked for the given optimization 
       solver, or if the result was \c Z3_L_FALSE.
       
       def_API('Z3_optimize_get_model', MODEL, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    Z3_model Z3_API Z3_optimize_get_model(Z3_context c, Z3_optimize o);

    /**
       \brief Set parameters on optimization context.       

       \param c - context
       \param o - optimization context
       \param p - parameters

       def_API('Z3_optimize_set_params', VOID, (_in(CONTEXT), _in(OPTIMIZE), _in(PARAMS)))
    */
    void Z3_API Z3_optimize_set_params(Z3_context c, Z3_optimize o, Z3_params p);

    /**
       \brief Return the parameter description set for the given optimize object.

       \param c - context
       \param o - optimization context

       def_API('Z3_optimize_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(OPTIMIZE)))
    */    
    Z3_param_descrs Z3_API Z3_optimize_get_param_descrs(Z3_context c, Z3_optimize o);

    /**
       \brief Retrieve lower bound value or approximation for the i'th optimization objective.

       \param c - context
       \param o - optimization context
       \param idx - index of optimization objective

       def_API('Z3_optimize_get_lower', AST, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT)))
    */
    Z3_ast Z3_API Z3_optimize_get_lower(Z3_context c, Z3_optimize o, unsigned idx);

    /**
       \brief Retrieve upper bound value or approximation for the i'th optimization objective.

       \param c - context
       \param o - optimization context
       \param idx - index of optimization objective

       def_API('Z3_optimize_get_upper', AST, (_in(CONTEXT), _in(OPTIMIZE), _in(UINT)))
    */
    Z3_ast Z3_API Z3_optimize_get_upper(Z3_context c, Z3_optimize o, unsigned idx);

    /**
       \brief Print the current context as a string.
       \param c - context.
       \param o - optimization context.

       def_API('Z3_optimize_to_string', STRING, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    Z3_string Z3_API Z3_optimize_to_string(
        __in Z3_context c, 
        __in Z3_optimize o);


    /**
       \brief Return a string containing a description of parameters accepted by optimize.

       def_API('Z3_optimize_get_help', STRING, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    Z3_string Z3_API Z3_optimize_get_help(__in Z3_context c, __in Z3_optimize t);

    /**
       \brief Retrieve statistics information from the last call to #Z3_optimize_check

       def_API('Z3_optimize_get_statistics', STATS, (_in(CONTEXT), _in(OPTIMIZE)))
    */
    Z3_stats Z3_API Z3_optimize_get_statistics(__in Z3_context c,__in Z3_optimize d);


#endif

#ifdef CorML4
    /*@}*/
    
    /**
        @name AST vectors
    */
    /*@{*/
    
    /**
       \brief Return an empty AST vector.

       \conly \remark Reference counting must be used to manage AST vectors, even when the Z3_context was
       \conly created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_ast_vector', AST_VECTOR, (_in(CONTEXT),))
    */
    Z3_ast_vector Z3_API Z3_mk_ast_vector(__in Z3_context c);
    
#ifdef Conly
    /**
       \brief Increment the reference counter of the given AST vector.
    
       def_API('Z3_ast_vector_inc_ref', VOID, (_in(CONTEXT), _in(AST_VECTOR)))
    */
    void Z3_API Z3_ast_vector_inc_ref(__in Z3_context c, __in Z3_ast_vector v);
    
    /**
       \brief Decrement the reference counter of the given AST vector.

       def_API('Z3_ast_vector_dec_ref', VOID, (_in(CONTEXT), _in(AST_VECTOR)))
    */
    void Z3_API Z3_ast_vector_dec_ref(__in Z3_context c, __in Z3_ast_vector v);
#endif
    
    /**
       \brief Return the size of the given AST vector.

       def_API('Z3_ast_vector_size', UINT, (_in(CONTEXT), _in(AST_VECTOR)))
    */
    unsigned Z3_API Z3_ast_vector_size(__in Z3_context c, __in Z3_ast_vector v);

    /**
       \brief Return the AST at position \c i in the AST vector \c v.
       
       \pre i < Z3_ast_vector_size(c, v)

       def_API('Z3_ast_vector_get', AST, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT)))
    */
    Z3_ast Z3_API Z3_ast_vector_get(__in Z3_context c, __in Z3_ast_vector v, __in unsigned i);    

    /**
       \brief Update position \c i of the AST vector \c v with the AST \c a. 

       \pre i < Z3_ast_vector_size(c, v)
    
       def_API('Z3_ast_vector_set', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT), _in(AST)))
    */
    void Z3_API Z3_ast_vector_set(__in Z3_context c, __in Z3_ast_vector v, __in unsigned i, __in Z3_ast a);    

    /**
       \brief Resize the AST vector \c v. 

       def_API('Z3_ast_vector_resize', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(UINT)))
    */
    void Z3_API Z3_ast_vector_resize(__in Z3_context c, __in Z3_ast_vector v, __in unsigned n);

    /**
       \brief Add the AST \c a in the end of the AST vector \c v. The size of \c v is increased by one.

       def_API('Z3_ast_vector_push', VOID, (_in(CONTEXT), _in(AST_VECTOR), _in(AST)))
    */
    void Z3_API Z3_ast_vector_push(__in Z3_context c, __in Z3_ast_vector v, __in Z3_ast a);        

    /**
       \brief Translate the AST vector \c v from context \c s into an AST vector in context \c t.

       def_API('Z3_ast_vector_translate', AST_VECTOR, (_in(CONTEXT), _in(AST_VECTOR), _in(CONTEXT)))
    */
    Z3_ast_vector Z3_API Z3_ast_vector_translate(__in Z3_context s, __in Z3_ast_vector v, __in Z3_context t);        

    /**
       \brief Convert AST vector into a string.
    
       def_API('Z3_ast_vector_to_string', STRING, (_in(CONTEXT), _in(AST_VECTOR)))
    */
    Z3_string Z3_API Z3_ast_vector_to_string(__in Z3_context c, __in Z3_ast_vector v);

    /*@}*/

    /**
        @name AST maps
    */
    /*@{*/
    
    /**
       \brief Return an empty mapping from AST to AST

       \conly \remark Reference counting must be used to manage AST maps, even when the Z3_context was
       \conly created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_ast_map', AST_MAP, (_in(CONTEXT),) )
    */
    Z3_ast_map Z3_API Z3_mk_ast_map(__in Z3_context c);

#ifdef Conly
    /**
       \brief Increment the reference counter of the given AST map.

       def_API('Z3_ast_map_inc_ref', VOID, (_in(CONTEXT), _in(AST_MAP)))
    */
    void Z3_API Z3_ast_map_inc_ref(__in Z3_context c, __in Z3_ast_map m);
    
    /**
       \brief Decrement the reference counter of the given AST map.
       
       def_API('Z3_ast_map_dec_ref', VOID, (_in(CONTEXT), _in(AST_MAP)))
    */
    void Z3_API Z3_ast_map_dec_ref(__in Z3_context c, __in Z3_ast_map m);
#endif
    
    /**
       \brief Return true if the map \c m contains the AST key \c k.

       def_API('Z3_ast_map_contains', BOOL, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
    */
    Z3_bool Z3_API Z3_ast_map_contains(__in Z3_context c, __in Z3_ast_map m, __in Z3_ast k);

    /**
       \brief Return the value associated with the key \c k.
       
       The procedure invokes the error handler if \c k is not in the map.

       def_API('Z3_ast_map_find', AST, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
    */
    Z3_ast Z3_API Z3_ast_map_find(__in Z3_context c, __in Z3_ast_map m, __in Z3_ast k);

    /**
       \brief Store/Replace a new key, value pair in the given map.

       def_API('Z3_ast_map_insert', VOID, (_in(CONTEXT), _in(AST_MAP), _in(AST), _in(AST)))
    */
    void Z3_API Z3_ast_map_insert(__in Z3_context c, __in Z3_ast_map m, __in Z3_ast k, __in Z3_ast v);

    /**
       \brief Erase a key from the map.

       def_API('Z3_ast_map_erase', VOID, (_in(CONTEXT), _in(AST_MAP), _in(AST)))
    */
    void Z3_API Z3_ast_map_erase(__in Z3_context c, __in Z3_ast_map m, __in Z3_ast k);

    /**
       \brief Remove all keys from the given map.

       def_API('Z3_ast_map_reset', VOID, (_in(CONTEXT), _in(AST_MAP)))
    */
    void Z3_API Z3_ast_map_reset(__in Z3_context c, __in Z3_ast_map m);
    
    /**
       \brief Return the size of the given map.

       def_API('Z3_ast_map_size', UINT, (_in(CONTEXT), _in(AST_MAP)))
    */
    unsigned Z3_API Z3_ast_map_size(__in Z3_context c, __in Z3_ast_map m);

    /**
       \brief Return the keys stored in the given map.
       
       def_API('Z3_ast_map_keys', AST_VECTOR, (_in(CONTEXT), _in(AST_MAP)))
    */
    Z3_ast_vector Z3_API Z3_ast_map_keys(__in Z3_context c, __in Z3_ast_map m);

    /**
       \brief Convert the given map into a string.

       def_API('Z3_ast_map_to_string', STRING, (_in(CONTEXT), _in(AST_MAP)))
    */
    Z3_string Z3_API Z3_ast_map_to_string(__in Z3_context c, __in Z3_ast_map m);

    /*@}*/
    
    /**
        @name Goals
    */
    /*@{*/

    /**
       \brief Create a goal (aka problem). A goal is essentially a set
       of formulas, that can be solved and/or transformed using
       tactics and solvers.
       
       If models == true, then model generation is enabled for the new goal.

       If unsat_cores == true, then unsat core generation is enabled for the new goal.

       If proofs == true, then proof generation is enabled for the new goal. Remark, the 
       Z3 context c must have been created with proof generation support.

       \conly \remark Reference counting must be used to manage goals, even when the Z3_context was
       \conly created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_goal', GOAL, (_in(CONTEXT), _in(BOOL), _in(BOOL), _in(BOOL)))
    */
    Z3_goal Z3_API Z3_mk_goal(__in Z3_context c, __in Z3_bool models, __in Z3_bool unsat_cores, __in Z3_bool proofs);
    
#ifdef Conly
    /**
       \brief Increment the reference counter of the given goal.
       
       def_API('Z3_goal_inc_ref', VOID, (_in(CONTEXT), _in(GOAL)))
    */
    void Z3_API Z3_goal_inc_ref(__in Z3_context c, __in Z3_goal g);

    /**
       \brief Decrement the reference counter of the given goal.

       def_API('Z3_goal_dec_ref', VOID, (_in(CONTEXT), _in(GOAL)))
    */
    void Z3_API Z3_goal_dec_ref(__in Z3_context c, __in Z3_goal g);
#endif

    /**
       \brief Return the "precision" of the given goal. Goals can be transformed using over and under approximations.
       A under approximation is applied when the objective is to find a model for a given goal.
       An over approximation is applied when the objective is to find a proof for a given goal.

       def_API('Z3_goal_precision', UINT, (_in(CONTEXT), _in(GOAL)))
    */
    Z3_goal_prec Z3_API Z3_goal_precision(__in Z3_context c, __in Z3_goal g);

    /**
       \brief Add a new formula \c a to the given goal. 
       
       def_API('Z3_goal_assert', VOID, (_in(CONTEXT), _in(GOAL), _in(AST)))
    */
    void Z3_API Z3_goal_assert(__in Z3_context c, __in Z3_goal g, __in Z3_ast a);
    
    /**
       \brief Return true if the given goal contains the formula \c false.

       def_API('Z3_goal_inconsistent', BOOL, (_in(CONTEXT), _in(GOAL)))
    */
    Z3_bool Z3_API Z3_goal_inconsistent(__in Z3_context c, __in Z3_goal g);

    /**
       \brief Return the depth of the given goal. It tracks how many transformations were applied to it.

       def_API('Z3_goal_depth', UINT, (_in(CONTEXT), _in(GOAL)))
    */
    unsigned Z3_API Z3_goal_depth(__in Z3_context c, __in Z3_goal g);

    /**
       \brief Erase all formulas from the given goal.
       
       def_API('Z3_goal_reset', VOID, (_in(CONTEXT), _in(GOAL)))
    */
    void Z3_API Z3_goal_reset(__in Z3_context c, __in Z3_goal g);

    /**
       \brief Return the number of formulas in the given goal.

       def_API('Z3_goal_size', UINT, (_in(CONTEXT), _in(GOAL)))
    */
    unsigned Z3_API Z3_goal_size(__in Z3_context c, __in Z3_goal g);
    
    /**
       \brief Return a formula from the given goal.

       \pre idx < Z3_goal_size(c, g)

       def_API('Z3_goal_formula', AST, (_in(CONTEXT), _in(GOAL), _in(UINT)))
    */
    Z3_ast Z3_API Z3_goal_formula(__in Z3_context c, __in Z3_goal g, __in unsigned idx);
    
    /**
       \brief Return the number of formulas, subformulas and terms in the given goal.

       def_API('Z3_goal_num_exprs', UINT, (_in(CONTEXT), _in(GOAL)))
    */
    unsigned Z3_API Z3_goal_num_exprs(__in Z3_context c, __in Z3_goal g);
    
    /**
       \brief Return true if the goal is empty, and it is precise or the product of a under approximation.

       def_API('Z3_goal_is_decided_sat', BOOL, (_in(CONTEXT), _in(GOAL)))
    */
    Z3_bool Z3_API Z3_goal_is_decided_sat(__in Z3_context c, __in Z3_goal g);
    
    /**
       \brief Return true if the goal contains false, and it is precise or the product of an over approximation.

       def_API('Z3_goal_is_decided_unsat', BOOL, (_in(CONTEXT), _in(GOAL)))
    */
    Z3_bool Z3_API Z3_goal_is_decided_unsat(__in Z3_context c, __in Z3_goal g);

    /**
       \brief Copy a goal \c g from the context \c source to a the context \c target.

       def_API('Z3_goal_translate', GOAL, (_in(CONTEXT), _in(GOAL), _in(CONTEXT)))
    */
    Z3_goal Z3_API Z3_goal_translate(__in Z3_context source, __in Z3_goal g, __in Z3_context target);
    
    /**
       \brief Convert a goal into a string.

       def_API('Z3_goal_to_string', STRING, (_in(CONTEXT), _in(GOAL)))
    */
    Z3_string Z3_API Z3_goal_to_string(__in Z3_context c, __in Z3_goal g);

    /*@}*/

    /**
        @name Tactics and Probes
    */
    /*@{*/

    /**
       \brief Return a tactic associated with the given name.
       The complete list of tactics may be obtained using the procedures #Z3_get_num_tactics and #Z3_get_tactic_name.
       It may also be obtained using the command <tt>(help-tactics)</tt> in the SMT 2.0 front-end.
    
       Tactics are the basic building block for creating custom solvers for specific problem domains.

       def_API('Z3_mk_tactic', TACTIC, (_in(CONTEXT), _in(STRING)))
    */
    Z3_tactic Z3_API Z3_mk_tactic(__in Z3_context c, __in Z3_string name);

#ifdef Conly
    /**
       \brief Increment the reference counter of the given tactic.

       def_API('Z3_tactic_inc_ref', VOID, (_in(CONTEXT), _in(TACTIC)))
    */
    void Z3_API Z3_tactic_inc_ref(__in Z3_context c, __in Z3_tactic t);

    /**
       \brief Decrement the reference counter of the given tactic.
       
       def_API('Z3_tactic_dec_ref', VOID, (_in(CONTEXT), _in(TACTIC)))
    */
    void Z3_API Z3_tactic_dec_ref(__in Z3_context c, __in Z3_tactic g);
#endif
    
    /**
       \brief Return a probe associated with the given name.
       The complete list of probes may be obtained using the procedures #Z3_get_num_probes and #Z3_get_probe_name.
       It may also be obtained using the command <tt>(help-tactics)</tt> in the SMT 2.0 front-end.

       Probes are used to inspect a goal (aka problem) and collect information that may be used to decide
       which solver and/or preprocessing step will be used.

       def_API('Z3_mk_probe', PROBE, (_in(CONTEXT), _in(STRING)))
    */
    Z3_probe Z3_API Z3_mk_probe(__in Z3_context c, __in Z3_string name);

#ifdef Conly
    /**
       \brief Increment the reference counter of the given probe.

       def_API('Z3_probe_inc_ref', VOID, (_in(CONTEXT), _in(PROBE)))
    */
    void Z3_API Z3_probe_inc_ref(__in Z3_context c, __in Z3_probe p);

    /**
       \brief Decrement the reference counter of the given probe.

       def_API('Z3_probe_dec_ref', VOID, (_in(CONTEXT), _in(PROBE)))
    */
    void Z3_API Z3_probe_dec_ref(__in Z3_context c, __in Z3_probe p);
#endif

    /**
       \brief Return a tactic that applies \c t1 to a given goal and \c t2
       to every subgoal produced by t1.

       def_API('Z3_tactic_and_then', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_and_then(__in Z3_context c, __in Z3_tactic t1, __in Z3_tactic t2);

    /**
       \brief Return a tactic that first applies \c t1 to a given goal,
       if it fails then returns the result of \c t2 applied to the given goal.

       def_API('Z3_tactic_or_else', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_or_else(__in Z3_context c, __in Z3_tactic t1, __in Z3_tactic t2);

    /**
       \brief Return a tactic that applies the given tactics in parallel.

       def_API('Z3_tactic_par_or', TACTIC, (_in(CONTEXT), _in(UINT), _in_array(1, TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_par_or(__in Z3_context c, __in unsigned num, __in_ecount(num) Z3_tactic const ts[]);

    /**
       \brief Return a tactic that applies \c t1 to a given goal and then \c t2
       to every subgoal produced by t1. The subgoals are processed in parallel.

       def_API('Z3_tactic_par_and_then', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_par_and_then(__in Z3_context c, __in Z3_tactic t1, __in Z3_tactic t2);
    
    /**
       \brief Return a tactic that applies \c t to a given goal for \c ms milliseconds.
       If \c t does not terminate in \c ms milliseconds, then it fails.

       def_API('Z3_tactic_try_for', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(UINT)))
     */
    Z3_tactic Z3_API Z3_tactic_try_for(__in Z3_context c, __in Z3_tactic t, __in unsigned ms);

    /**
       \brief Return a tactic that applies \c t to a given goal is the probe \c p evaluates to true.
       If \c p evaluates to false, then the new tactic behaves like the skip tactic.

       def_API('Z3_tactic_when', TACTIC, (_in(CONTEXT), _in(PROBE), _in(TACTIC)))
    */
    Z3_tactic Z3_API Z3_tactic_when(__in Z3_context c, __in Z3_probe p, __in Z3_tactic t);
    
    /**
       \brief Return a tactic that applies \c t1 to a given goal if the probe \c p evaluates to true,
       and \c t2 if \c p evaluates to false.

       def_API('Z3_tactic_cond', TACTIC, (_in(CONTEXT), _in(PROBE), _in(TACTIC), _in(TACTIC)))
     */
    Z3_tactic Z3_API Z3_tactic_cond(__in Z3_context c, __in Z3_probe p, __in Z3_tactic t1, __in Z3_tactic t2);
    
    /**
       \brief Return a tactic that keeps applying \c t until the goal is not modified anymore or the maximum
       number of iterations \c max is reached.

       def_API('Z3_tactic_repeat', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(UINT)))
    */
    Z3_tactic Z3_API Z3_tactic_repeat(__in Z3_context c, __in Z3_tactic t, unsigned max);

    /**
       \brief Return a tactic that just return the given goal.

       def_API('Z3_tactic_skip', TACTIC, (_in(CONTEXT),))
    */
    Z3_tactic Z3_API Z3_tactic_skip(__in Z3_context c);

    /**
       \brief Return a tactic that always fails.

       def_API('Z3_tactic_fail', TACTIC, (_in(CONTEXT),))
    */
    Z3_tactic Z3_API Z3_tactic_fail(__in Z3_context c);

    /**
       \brief Return a tactic that fails if the probe \c p evaluates to false.

       def_API('Z3_tactic_fail_if', TACTIC, (_in(CONTEXT), _in(PROBE)))
    */
    Z3_tactic Z3_API Z3_tactic_fail_if(__in Z3_context c, __in Z3_probe p);

    /**
       \brief Return a tactic that fails if the goal is not trivially satisfiable (i.e., empty) or
       trivially unsatisfiable (i.e., contains false).

       def_API('Z3_tactic_fail_if_not_decided', TACTIC, (_in(CONTEXT),))
    */
    Z3_tactic Z3_API Z3_tactic_fail_if_not_decided(__in Z3_context c);

    /**
       \brief Return a tactic that applies \c t using the given set of parameters.

       def_API('Z3_tactic_using_params', TACTIC, (_in(CONTEXT), _in(TACTIC), _in(PARAMS)))
    */
    Z3_tactic Z3_API Z3_tactic_using_params(__in Z3_context c, __in Z3_tactic t, __in Z3_params p);

    /**
       \brief Return a probe that always evaluates to val.

       def_API('Z3_probe_const', PROBE, (_in(CONTEXT), _in(DOUBLE)))
    */
    Z3_probe Z3_API Z3_probe_const(__in Z3_context x, __in double val);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is less than the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_lt', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_lt(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is greater than the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_gt', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_gt(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is less than or equal to the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_le', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_le(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is greater than or equal to the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.
       
       def_API('Z3_probe_ge', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE))) 
    */
    Z3_probe Z3_API Z3_probe_ge(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when the value returned by \c p1 is equal to the value returned by \c p2.

       \remark For probes, "true" is any value different from 0.0.
    
       def_API('Z3_probe_eq', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_eq(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when \c p1 and \c p2 evaluates to true.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_and', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_and(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);
 
    /**
       \brief Return a probe that evaluates to "true" when \c p1 or \c p2 evaluates to true.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_or', PROBE, (_in(CONTEXT), _in(PROBE), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_or(__in Z3_context x, __in Z3_probe p1, __in Z3_probe p2);

    /**
       \brief Return a probe that evaluates to "true" when \c p does not evaluate to true.

       \remark For probes, "true" is any value different from 0.0.

       def_API('Z3_probe_not', PROBE, (_in(CONTEXT), _in(PROBE)))
    */
    Z3_probe Z3_API Z3_probe_not(__in Z3_context x, __in Z3_probe p);

    /**
       \brief Return the number of builtin tactics available in Z3.

       def_API('Z3_get_num_tactics', UINT, (_in(CONTEXT),))
    */
    unsigned Z3_API Z3_get_num_tactics(__in Z3_context c);

    /**
       \brief Return the name of the idx tactic.

       \pre i < Z3_get_num_tactics(c)

       def_API('Z3_get_tactic_name', STRING, (_in(CONTEXT), _in(UINT)))
    */
    Z3_string Z3_API Z3_get_tactic_name(__in Z3_context c, unsigned i);

    /**
       \brief Return the number of builtin probes available in Z3.

       def_API('Z3_get_num_probes', UINT, (_in(CONTEXT),))
    */
    unsigned Z3_API Z3_get_num_probes(__in Z3_context c);

    /**
       \brief Return the name of the i probe.

       \pre i < Z3_get_num_probes(c)
       
       def_API('Z3_get_probe_name', STRING, (_in(CONTEXT), _in(UINT)))
    */
    Z3_string Z3_API Z3_get_probe_name(__in Z3_context c, unsigned i);

    /**
       \brief Return a string containing a description of parameters accepted by the given tactic.

       def_API('Z3_tactic_get_help', STRING, (_in(CONTEXT), _in(TACTIC)))
    */
    Z3_string Z3_API Z3_tactic_get_help(__in Z3_context c, __in Z3_tactic t);

    /**
       \brief Return the parameter description set for the given tactic object.

       def_API('Z3_tactic_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(TACTIC)))
    */
    Z3_param_descrs Z3_API Z3_tactic_get_param_descrs(__in Z3_context c, __in Z3_tactic t);

    /**
       \brief Return a string containing a description of the tactic with the given name.

       def_API('Z3_tactic_get_descr', STRING, (_in(CONTEXT), _in(STRING)))
    */
    Z3_string Z3_API Z3_tactic_get_descr(__in Z3_context c, __in Z3_string name);
    
    /**
       \brief Return a string containing a description of the probe with the given name.

       def_API('Z3_probe_get_descr', STRING, (_in(CONTEXT), _in(STRING)))
    */
    Z3_string Z3_API Z3_probe_get_descr(__in Z3_context c, __in Z3_string name);

    /**
       \brief Execute the probe over the goal. The probe always produce a double value.
       "Boolean" probes return 0.0 for false, and a value different from 0.0 for true.

       def_API('Z3_probe_apply', DOUBLE, (_in(CONTEXT), _in(PROBE), _in(GOAL)))
    */
    double Z3_API Z3_probe_apply(__in Z3_context c, __in Z3_probe p, __in Z3_goal g);

    /**
       \brief Apply tactic \c t to the goal \c g.
       
       def_API('Z3_tactic_apply', APPLY_RESULT, (_in(CONTEXT), _in(TACTIC), _in(GOAL)))
    */
    Z3_apply_result Z3_API Z3_tactic_apply(__in Z3_context c, __in Z3_tactic t, __in Z3_goal g);

    /**
       \brief Apply tactic \c t to the goal \c g using the parameter set \c p.

       def_API('Z3_tactic_apply_ex', APPLY_RESULT, (_in(CONTEXT), _in(TACTIC), _in(GOAL), _in(PARAMS)))
    */
    Z3_apply_result Z3_API Z3_tactic_apply_ex(__in Z3_context c, __in Z3_tactic t, __in Z3_goal g, __in Z3_params p);

#ifdef CorML3
    /**
       \brief Increment the reference counter of the given \c Z3_apply_result object.

       def_API('Z3_apply_result_inc_ref', VOID, (_in(CONTEXT), _in(APPLY_RESULT)))
    */
    void Z3_API Z3_apply_result_inc_ref(__in Z3_context c, __in Z3_apply_result r);

    /**
       \brief Decrement the reference counter of the given \c Z3_apply_result object.

       def_API('Z3_apply_result_dec_ref', VOID, (_in(CONTEXT), _in(APPLY_RESULT)))
    */
    void Z3_API Z3_apply_result_dec_ref(__in Z3_context c, __in Z3_apply_result r);
#endif
    
    /**
       \brief Convert the \c Z3_apply_result object returned by #Z3_tactic_apply into a string.

       def_API('Z3_apply_result_to_string', STRING, (_in(CONTEXT), _in(APPLY_RESULT)))
    */
    Z3_string Z3_API Z3_apply_result_to_string(__in Z3_context c, __in Z3_apply_result r);
    
    /**
       \brief Return the number of subgoals in the \c Z3_apply_result object returned by #Z3_tactic_apply.

       def_API('Z3_apply_result_get_num_subgoals', UINT, (_in(CONTEXT), _in(APPLY_RESULT)))
    */
    unsigned Z3_API Z3_apply_result_get_num_subgoals(__in Z3_context c, __in Z3_apply_result r);

    /**
       \brief Return one of the subgoals in the \c Z3_apply_result object returned by #Z3_tactic_apply.
       
       \pre i < Z3_apply_result_get_num_subgoals(c, r)

       def_API('Z3_apply_result_get_subgoal', GOAL, (_in(CONTEXT), _in(APPLY_RESULT), _in(UINT)))
    */ 
    Z3_goal Z3_API Z3_apply_result_get_subgoal(__in Z3_context c, __in Z3_apply_result r, __in unsigned i);
    
    /**
       \brief Convert a model for the subgoal \c Z3_apply_result_get_subgoal(c, r, i) into a model for the original goal \c g.
       Where \c g is the goal used to create \c r using \c Z3_tactic_apply(c, t, g).

       def_API('Z3_apply_result_convert_model', MODEL, (_in(CONTEXT), _in(APPLY_RESULT), _in(UINT), _in(MODEL)))
    */
    Z3_model Z3_API Z3_apply_result_convert_model(__in Z3_context c, __in Z3_apply_result r, __in unsigned i, __in Z3_model m);

    /*@}*/

    /**
        @name Solvers
    */
    /*@{*/

    /**
       \brief Create a new (incremental) solver. This solver also uses a
       set of builtin tactics for handling the first check-sat command, and
       check-sat commands that take more than a given number of milliseconds to be solved. 
       
       \conly \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
       \conly Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_solver', SOLVER, (_in(CONTEXT),))
    */
    Z3_solver Z3_API Z3_mk_solver(__in Z3_context c);

    /**
       \brief Create a new (incremental) solver.

       The function #Z3_solver_get_model retrieves a model if the
       assertions is satisfiable (i.e., the result is \c
       Z3_L_TRUE) and model construction is enabled.
       The function #Z3_solver_get_model can also be used even
       if the result is \c Z3_L_UNDEF, but the returned model
       is not guaranteed to satisfy quantified assertions.

       def_API('Z3_mk_simple_solver', SOLVER, (_in(CONTEXT),))
    */
    Z3_solver Z3_API Z3_mk_simple_solver(__in Z3_context c);

    /**
       \brief Create a new solver customized for the given logic.
       It behaves like #Z3_mk_solver if the logic is unknown or unsupported.
       
       \conly \remark User must use #Z3_solver_inc_ref and #Z3_solver_dec_ref to manage solver objects.
       \conly Even if the context was created using #Z3_mk_context instead of #Z3_mk_context_rc.

       def_API('Z3_mk_solver_for_logic', SOLVER, (_in(CONTEXT), _in(SYMBOL)))
    */
    Z3_solver Z3_API Z3_mk_solver_for_logic(__in Z3_context c, __in Z3_symbol logic);

    /**
       \brief Create a new solver that is implemented using the given tactic.
       The solver supports the commands #Z3_solver_push and #Z3_solver_pop, but it
       will always solve each #Z3_solver_check from scratch.

       def_API('Z3_mk_solver_from_tactic', SOLVER, (_in(CONTEXT), _in(TACTIC)))
    */
    Z3_solver Z3_API Z3_mk_solver_from_tactic(__in Z3_context c, __in Z3_tactic t);

    /**
       \brief Return a string describing all solver available parameters.

       def_API('Z3_solver_get_help', STRING, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_string Z3_API Z3_solver_get_help(__in Z3_context c, __in Z3_solver s);

    /**
       \brief Return the parameter description set for the given solver object.

       def_API('Z3_solver_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_param_descrs Z3_API Z3_solver_get_param_descrs(__in Z3_context c, __in Z3_solver s);

    /**
       \brief Set the given solver using the given parameters.

       def_API('Z3_solver_set_params', VOID, (_in(CONTEXT), _in(SOLVER), _in(PARAMS)))
    */
    void Z3_API Z3_solver_set_params(__in Z3_context c, __in Z3_solver s, __in Z3_params p);
    
#ifdef Conly
    /**
       \brief Increment the reference counter of the given solver.
       
       def_API('Z3_solver_inc_ref', VOID, (_in(CONTEXT), _in(SOLVER)))
    */
    void Z3_API Z3_solver_inc_ref(__in Z3_context c, __in Z3_solver s);

    /**
       \brief Decrement the reference counter of the given solver.

       def_API('Z3_solver_dec_ref', VOID, (_in(CONTEXT), _in(SOLVER)))
    */
    void Z3_API Z3_solver_dec_ref(__in Z3_context c, __in Z3_solver s);
#endif
    
    /**
       \brief Create a backtracking point.
       
       The solver contains a stack of assertions. 

       \sa Z3_solver_pop

       def_API('Z3_solver_push', VOID, (_in(CONTEXT), _in(SOLVER)))
    */
    void Z3_API Z3_solver_push(__in Z3_context c, __in Z3_solver s);

    /**
       \brief Backtrack \c n backtracking points.
       
       \sa Z3_solver_push

       \pre n <= Z3_solver_get_num_scopes(c, s)

       def_API('Z3_solver_pop', VOID, (_in(CONTEXT), _in(SOLVER), _in(UINT)))
    */
    void Z3_API Z3_solver_pop(__in Z3_context c, __in Z3_solver s, unsigned n);

    /**
       \brief Remove all assertions from the solver.

       def_API('Z3_solver_reset', VOID, (_in(CONTEXT), _in(SOLVER)))
    */
    void Z3_API Z3_solver_reset(__in Z3_context c, __in Z3_solver s);
    
    /**
       \brief Return the number of backtracking points.
       
       \sa Z3_solver_push
       \sa Z3_solver_pop
       
       def_API('Z3_solver_get_num_scopes', UINT, (_in(CONTEXT), _in(SOLVER)))
    */
    unsigned Z3_API Z3_solver_get_num_scopes(__in Z3_context c, __in Z3_solver s);
    
    /**
       \brief Assert a constraint into the solver.
       
       The functions #Z3_solver_check and #Z3_solver_check_assumptions should be
       used to check whether the logical context is consistent or not.

       def_API('Z3_solver_assert', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST)))
    */
    void Z3_API Z3_solver_assert(__in Z3_context c, __in Z3_solver s, __in Z3_ast a);

    /**
       \brief Assert a constraint \c a into the solver, and track it (in the unsat) core using
       the Boolean constant \c p. 
       
       This API is an alternative to #Z3_solver_check_assumptions for extracting unsat cores.
       Both APIs can be used in the same solver. The unsat core will contain a combination
       of the Boolean variables provided using Z3_solver_assert_and_track and the Boolean literals
       provided using #Z3_solver_check_assumptions.

       \pre \c a must be a Boolean expression
       \pre \c p must be a Boolean constant (aka variable).
       
       def_API('Z3_solver_assert_and_track', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST), _in(AST)))
    */
    void Z3_API Z3_solver_assert_and_track(__in Z3_context c, __in Z3_solver s, __in Z3_ast a, __in Z3_ast p);
    
    /**
       \brief Return the set of asserted formulas as a goal object.
    
       def_API('Z3_solver_get_assertions', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))       
    */
    Z3_ast_vector Z3_API Z3_solver_get_assertions(__in Z3_context c, __in Z3_solver s);
    
    /**
       \brief Check whether the assertions in a given solver are consistent or not.

       The function #Z3_solver_get_model retrieves a model if the
       assertions is satisfiable (i.e., the result is \c
       Z3_L_TRUE) and model construction is enabled.
       Note that if the call returns Z3_L_UNDEF, Z3 does not
       ensure that calls to #Z3_solver_get_model succeed and any models
       produced in this case are not guaranteed to satisfy the assertions.

       The function #Z3_solver_get_proof retrieves a proof if proof
       generation was enabled when the context was created, and the 
       assertions are unsatisfiable (i.e., the result is \c Z3_L_FALSE).

       def_API('Z3_solver_check', INT, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_lbool Z3_API Z3_solver_check(__in Z3_context c, __in Z3_solver s);

    /**
       \brief Check whether the assertions in the given solver and
       optional assumptions are consistent or not.

       The function #Z3_solver_get_unsat_core retrieves the subset of the 
       assumptions used in the unsatisfiability proof produced by Z3.
      
       \sa Z3_solver_check

       def_API('Z3_solver_check_assumptions', INT, (_in(CONTEXT), _in(SOLVER), _in(UINT), _in_array(2, AST)))
    */
    Z3_lbool Z3_API Z3_solver_check_assumptions(__in Z3_context c, __in Z3_solver s, 
                                                __in unsigned num_assumptions, __in_ecount(num_assumptions) Z3_ast const assumptions[]);

    /**
       \brief Retrieve the model for the last #Z3_solver_check or #Z3_solver_check_assumptions

       The error handler is invoked if a model is not available because 
       the commands above were not invoked for the given solver, or if the result was \c Z3_L_FALSE.
       
       def_API('Z3_solver_get_model', MODEL, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_model Z3_API Z3_solver_get_model(__in Z3_context c, __in Z3_solver s);

    /**
       \brief Retrieve the proof for the last #Z3_solver_check or #Z3_solver_check_assumptions

       The error handler is invoked if proof generation is not enabled,
       or if the commands above were not invoked for the given solver,
       or if the result was different from \c Z3_L_FALSE.

       def_API('Z3_solver_get_proof', AST, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_ast Z3_API Z3_solver_get_proof(__in Z3_context c, __in Z3_solver s);

    /**
       \brief Retrieve the unsat core for the last #Z3_solver_check_assumptions
       The unsat core is a subset of the assumptions \c a.

       def_API('Z3_solver_get_unsat_core', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_ast_vector Z3_API Z3_solver_get_unsat_core(__in Z3_context c, __in Z3_solver s);
    
    /**
       \brief Return a brief justification for an "unknown" result (i.e., Z3_L_UNDEF) for
       the commands #Z3_solver_check and #Z3_solver_check_assumptions

       def_API('Z3_solver_get_reason_unknown', STRING, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_string Z3_API Z3_solver_get_reason_unknown(__in Z3_context c, __in Z3_solver s);
    
    /**
       \brief Return statistics for the given solver.

       \conly \remark User must use #Z3_stats_inc_ref and #Z3_stats_dec_ref to manage Z3_stats objects.

       def_API('Z3_solver_get_statistics', STATS, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_stats Z3_API Z3_solver_get_statistics(__in Z3_context c, __in Z3_solver s);
    
    /**
       \brief Convert a solver into a string.

       def_API('Z3_solver_to_string', STRING, (_in(CONTEXT), _in(SOLVER)))
    */
    Z3_string Z3_API Z3_solver_to_string(__in Z3_context c, __in Z3_solver s);

    /*@}*/

    /**
        @name Statistics
    */
    /*@{*/

#ifdef ML4only
#include <mlx_statistics.idl>
#endif
    /**
       \brief Convert a statistics into a string.
       
       def_API('Z3_stats_to_string', STRING, (_in(CONTEXT), _in(STATS)))
    */
    Z3_string Z3_API Z3_stats_to_string(__in Z3_context c, __in Z3_stats s);
    
    /**
       \mlonly {4 {L Low-level API}} \endmlonly
    */

#ifdef Conly
    /**
       \brief Increment the reference counter of the given statistics object.
       
       def_API('Z3_stats_inc_ref', VOID, (_in(CONTEXT), _in(STATS)))
    */
    void Z3_API Z3_stats_inc_ref(__in Z3_context c, __in Z3_stats s);

    /**
       \brief Decrement the reference counter of the given statistics object.

       def_API('Z3_stats_dec_ref', VOID, (_in(CONTEXT), _in(STATS)))
    */
    void Z3_API Z3_stats_dec_ref(__in Z3_context c, __in Z3_stats s);
#endif
    
    /**
       \brief Return the number of statistical data in \c s.

       def_API('Z3_stats_size', UINT, (_in(CONTEXT), _in(STATS)))
    */
    unsigned Z3_API Z3_stats_size(__in Z3_context c, __in Z3_stats s);

    /**
       \brief Return the key (a string) for a particular statistical data.

       \pre idx < Z3_stats_size(c, s)

       def_API('Z3_stats_get_key', STRING, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    Z3_string Z3_API Z3_stats_get_key(__in Z3_context c, __in Z3_stats s, __in unsigned idx);

    /**
       \brief Return Z3_TRUE if the given statistical data is a unsigned integer.
       
       \pre idx < Z3_stats_size(c, s)

       def_API('Z3_stats_is_uint', BOOL, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    Z3_bool Z3_API Z3_stats_is_uint(__in Z3_context c, __in Z3_stats s, __in unsigned idx);

    /**
       \brief Return Z3_TRUE if the given statistical data is a double.
       
       \pre idx < Z3_stats_size(c, s)

       def_API('Z3_stats_is_double', BOOL, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    Z3_bool Z3_API Z3_stats_is_double(__in Z3_context c, __in Z3_stats s, __in unsigned idx);
    
    /**
       \brief Return the unsigned value of the given statistical data.
       
       \pre idx < Z3_stats_size(c, s) && Z3_stats_is_uint(c, s)

       def_API('Z3_stats_get_uint_value', UINT, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    unsigned Z3_API Z3_stats_get_uint_value(__in Z3_context c, __in Z3_stats s, __in unsigned idx);

    /**
       \brief Return the double value of the given statistical data.
       
       \pre idx < Z3_stats_size(c, s) && Z3_stats_is_double(c, s)

       def_API('Z3_stats_get_double_value', DOUBLE, (_in(CONTEXT), _in(STATS), _in(UINT)))
    */
    double Z3_API Z3_stats_get_double_value(__in Z3_context c, __in Z3_stats s, __in unsigned idx);
    
    /*@}*/
#endif


#ifdef CorML3

    /**
       @name Deprecated Injective functions API
    */
    /*@{*/

    /**
       \brief Create injective function declaration

       \deprecated This method just asserts a (universally quantified) formula that asserts that
       the new function is injective. It is compatible with the old interface for solving:
       #Z3_assert_cnstr, #Z3_check_assumptions, etc.

       def_API('Z3_mk_injective_function', FUNC_DECL, (_in(CONTEXT), _in(SYMBOL), _in(UINT), _in_array(2, SORT), _in(SORT)))
    */
    Z3_func_decl Z3_API Z3_mk_injective_function(
        __in Z3_context c, 
        __in Z3_symbol s, 
        unsigned domain_size, __in_ecount(domain_size) Z3_sort const domain[],
        __in Z3_sort range
        );

    /*@}*/
#endif


    /**
       @name Deprecated Constraints API
    */
    /*@{*/

#ifdef CorML3
    /**
       \brief Set the SMTLIB logic to be used in the given logical context.
       It is incorrect to invoke this function after invoking
       #Z3_check, #Z3_check_and_get_model, #Z3_check_assumptions and #Z3_push.
       Return \c Z3_TRUE if the logic was changed successfully, and \c Z3_FALSE otherwise.

       \deprecated Subsumed by #Z3_mk_solver_for_logic

       def_API('Z3_set_logic', VOID, (_in(CONTEXT), _in(STRING)))
    */
    Z3_bool Z3_API Z3_set_logic(__in Z3_context c, __in Z3_string logic);
    
    /**
        \brief Create a backtracking point.
        
        The logical context can be viewed as a stack of contexts.  The
        scope level is the number of elements on this stack. The stack
        of contexts is simulated using trail (undo) stacks.

        \sa Z3_pop

        \deprecated Subsumed by #Z3_solver_push

        def_API('Z3_push', VOID, (_in(CONTEXT),))
    */
    void Z3_API Z3_push(__in Z3_context c);
    
    /**
       \brief Backtrack.
       
       Restores the context from the top of the stack, and pops it off the
       stack.  Any changes to the logical context (by #Z3_assert_cnstr or
       other functions) between the matching #Z3_push and \c Z3_pop
       operators are flushed, and the context is completely restored to
       what it was right before the #Z3_push.
       
       \sa Z3_push

       \deprecated Subsumed by #Z3_solver_pop
       
       def_API('Z3_pop', VOID, (_in(CONTEXT), _in(UINT)))
    */
    void Z3_API Z3_pop(__in Z3_context c, __in unsigned num_scopes);

    /**
       \brief Retrieve the current scope level.
       
       It retrieves the number of scopes that have been pushed, but not yet popped.
       
       \sa Z3_push
       \sa Z3_pop
    
       \deprecated Subsumed by #Z3_solver_get_num_scopes.

       def_API('Z3_get_num_scopes', UINT, (_in(CONTEXT),))
    */
    unsigned Z3_API Z3_get_num_scopes(__in Z3_context c);
    
    /**
       \conly \brief Persist AST through num_scopes pops.
       \conly This function is only relevant if \c c was created using #Z3_mk_context.
       \conly If \c c was created using #Z3_mk_context_rc, this function is a NOOP.
       
       \conly Normally, for contexts created using #Z3_mk_context,
       \conly references to terms are no longer valid when
       \conly popping scopes beyond the level where the terms are created.
       \conly If you want to reference a term below the scope where it
       \conly was created, use this method to specify how many pops
       \conly the term should survive.
       \conly The num_scopes should be at most equal to the number of
       \conly calls to Z3_push subtracted with the calls to Z3_pop.
    
       \conly \deprecated Z3 users should move to #Z3_mk_context_rc and use the
       \conly reference counting APIs for managing AST nodes.

       \mlonly \deprecated This function has no effect. \endmlonly

       def_API('Z3_persist_ast', VOID, (_in(CONTEXT), _in(AST), _in(UINT)))
    */
    void Z3_API Z3_persist_ast(__in Z3_context c, __in Z3_ast a, __in unsigned num_scopes);

    /**
       \brief Assert a constraint into the logical context.
       
       After one assertion, the logical context may become
       inconsistent.  
       
       The functions #Z3_check or #Z3_check_and_get_model should be
       used to check whether the logical context is consistent or not.

       \sa Z3_check
       \sa Z3_check_and_get_model

       \deprecated Subsumed by #Z3_solver_assert

       def_API('Z3_assert_cnstr', VOID, (_in(CONTEXT), _in(AST)))
    */
    void Z3_API Z3_assert_cnstr(__in Z3_context c, __in Z3_ast a);
    
    /**
       \brief Check whether the given logical context is consistent or not.

       If the logical context is not unsatisfiable (i.e., the return value is different from \c Z3_L_FALSE)
       and model construction is enabled (see #Z3_mk_config),
       \conly then a model is stored in \c m. Otherwise, the value \c NULL is stored in \c m.
       \mlonly then a valid model is returned.  Otherwise, it is unsafe to use the returned model.\endmlonly
       \conly The caller is responsible for deleting the model using the function #Z3_del_model.
       
       \conly \remark In contrast with the rest of the Z3 API, the reference counter of the
       \conly model is incremented. This is to guarantee backward compatibility. In previous
       \conly versions, models did not support reference counting.
       
       \remark Model construction must be enabled using configuration
       parameters (See, #Z3_mk_config).

       \sa Z3_check
       \conly \sa Z3_del_model

       \deprecated Subsumed by #Z3_solver_check

       def_API('Z3_check_and_get_model', INT, (_in(CONTEXT), _out(MODEL)))
    */
    Z3_lbool Z3_API Z3_check_and_get_model(__in Z3_context c, __out Z3_model * m);
    
    /**
       \brief Check whether the given logical context is consistent or not.

       The function #Z3_check_and_get_model should be used when models are needed.

       \sa Z3_check_and_get_model
    
       \deprecated Subsumed by #Z3_solver_check

       def_API('Z3_check', INT, (_in(CONTEXT),))
    */
    Z3_lbool Z3_API Z3_check(__in Z3_context c);

    /**
       \brief Check whether the given logical context and optional assumptions is consistent or not.

       If the logical context is not unsatisfiable (i.e., the return value is different from \c Z3_L_FALSE),
       \conly a non-NULL model argument is passed in,
       and model construction is enabled (see #Z3_mk_config),
       \conly then a model is stored in \c m.  Otherwise, \c m is left unchanged.
       \mlonly then a valid model is returned.  Otherwise, it is unsafe to use the returned model.\endmlonly
       \conly The caller is responsible for deleting the model using the function #Z3_del_model.
       
       \conly \remark If the model argument is non-NULL, then model construction must be enabled using configuration
       \conly parameters (See, #Z3_mk_config).

       \param c logical context.
       \param num_assumptions number of auxiliary assumptions.
       \param assumptions array of auxiliary assumptions
       \param m optional pointer to a model.
       \param proof optional pointer to a proof term.
       \param core_size size of unsatisfiable core. 
       \param core pointer to an array receiving unsatisfiable core. 
              The unsatisfiable core is a subset of the assumptions, so the array has the same size as the assumptions.
              The \c core array is not populated if \c core_size is set to 0.

       \pre assumptions comprises of propositional literals.
            In other words, you cannot use compound formulas for assumptions, 
            but should use propositional variables or negations of propositional variables.
              
       \conly \remark In constrast with the rest of the Z3 API, the reference counter of the
       \conly model is incremented. This is to guarantee backward compatibility. In previous
       \conly versions, models did not support reference counting.

       \sa Z3_check
       \conly \sa Z3_del_model
    
       \deprecated Subsumed by #Z3_solver_check_assumptions

       def_API('Z3_check_assumptions', INT, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _out(MODEL), _out(AST), _out(UINT), _out_array2(1, 5, AST)))
    */
    Z3_lbool Z3_API Z3_check_assumptions(
        __in Z3_context c, 
        __in unsigned num_assumptions, __in_ecount(num_assumptions) Z3_ast const assumptions[], 
        __out Z3_model * m, __out Z3_ast* proof, 
        __inout unsigned* core_size, __inout_ecount(num_assumptions) Z3_ast core[]
        );
#endif

#ifdef CorML4
    /**
       \brief Retrieve congruence class representatives for terms.

       The function can be used for relying on Z3 to identify equal terms under the current
       set of assumptions. The array of terms and array of class identifiers should have
       the same length. The class identifiers are numerals that are assigned to the same
       value for their corresponding terms if the current context forces the terms to be
       equal. You cannot deduce that terms corresponding to different numerals must be all different, 
       (especially when using non-convex theories).
       All implied equalities are returned by this call.
       This means that two terms map to the same class identifier if and only if
       the current context implies that they are equal.

       A side-effect of the function is a satisfiability check on the assertions on the solver that is passed in.
       The function return Z3_L_FALSE if the current assertions are not satisfiable.

       \sa Z3_check_and_get_model
       \sa Z3_check
    
       \deprecated To be moved outside of API.

       def_API('Z3_get_implied_equalities', UINT, (_in(CONTEXT), _in(SOLVER), _in(UINT), _in_array(2, AST), _out_array(2, UINT)))
    */
    Z3_lbool Z3_API Z3_get_implied_equalities(
        __in Z3_context c, 
        __in Z3_solver  s, 
        __in unsigned num_terms,
        __in_ecount(num_terms) Z3_ast const terms[],
        __out_ecount(num_terms) unsigned class_ids[]
        );
#endif

#ifdef CorML3
    /**
       \brief Delete a model object.
       
       \sa Z3_check_and_get_model

       \conly \remark The Z3_check_and_get_model automatically increments a reference count on the model.
       \conly The expected usage is that models created by that method are deleted using Z3_del_model.
       \conly This is for backwards compatibility and in contrast to the rest of the API where
       \conly callers are responsible for managing reference counts.
    
       \deprecated Subsumed by Z3_solver API
       
       def_API('Z3_del_model', VOID, (_in(CONTEXT), _in(MODEL)))
    */
    void Z3_API Z3_del_model(__in Z3_context c, __in Z3_model m);

    /*@}*/

    /**
       @name Deprecated Search control API
    */
    /*@{*/

    /**
       \brief Cancel an ongoing check.
       
       Notifies the current check to abort and return.
       This method should be called from a different thread
       than the one performing the check.
       
       \deprecated Use #Z3_interrupt instead.
       
       def_API('Z3_soft_check_cancel', VOID, (_in(CONTEXT), ))
    */
    void Z3_API Z3_soft_check_cancel(__in Z3_context c);

    /**
       \brief Retrieve reason for search failure.
       
       If a call to #Z3_check or #Z3_check_and_get_model returns Z3_L_UNDEF, 
       use this facility to determine the more detailed cause of search failure.

       \deprecated Subsumed by #Z3_solver_get_reason_unknown

       def_API('Z3_get_search_failure', UINT, (_in(CONTEXT), ))
    */
    Z3_search_failure Z3_API Z3_get_search_failure(__in Z3_context c);

    /*@}*/

    /**
       @name Deprecated Labels API
    */
    /*@{*/

    /**
       \brief Create a labeled formula.

       \param c logical context.
       \param s name of the label.
       \param is_pos label polarity.
       \param f formula being labeled.

       A label behaves as an identity function, so the truth value of the 
       labeled formula is unchanged. Labels are used for identifying 
       useful sub-formulas when generating counter-examples.

       \deprecated Labels are only supported by the old Solver API.
       This feature is not essential (it can be simulated using auxiliary Boolean variables).
       It is only available for backward compatibility.

       def_API('Z3_mk_label', AST, (_in(CONTEXT), _in(SYMBOL), _in(BOOL), _in(AST)))
    */
    Z3_ast Z3_API Z3_mk_label(__in Z3_context c, __in Z3_symbol s, Z3_bool is_pos, Z3_ast f);

    /**
        \brief Retrieve the set of labels that were relevant in
        the context of the current satisfied context.

        \sa Z3_del_literals
        \sa Z3_get_num_literals
        \sa Z3_get_label_symbol
        \sa Z3_get_literal

        \deprecated This procedure is based on the old Solver API.

        def_API('Z3_get_relevant_labels', LITERALS, (_in(CONTEXT), ))
    */
    Z3_literals Z3_API Z3_get_relevant_labels(__in Z3_context c);

    /**
        \brief Retrieve the set of literals that satisfy the current context.

        \sa Z3_del_literals
        \sa Z3_get_num_literals
        \sa Z3_get_label_symbol
        \sa Z3_get_literal

        \deprecated This procedure is based on the old Solver API.

        def_API('Z3_get_relevant_literals', LITERALS, (_in(CONTEXT), ))
    */
    Z3_literals Z3_API Z3_get_relevant_literals(__in Z3_context c);

    /**
        \brief Retrieve the set of literals that whose assignment were 
        guess, but not propagated during the search.

        \sa Z3_del_literals
        \sa Z3_get_num_literals
        \sa Z3_get_label_symbol
        \sa Z3_get_literal

        \deprecated This procedure is based on the old Solver API.
        
        def_API('Z3_get_guessed_literals', LITERALS, (_in(CONTEXT), ))
    */
    Z3_literals Z3_API Z3_get_guessed_literals(__in Z3_context c);

    /**
       \brief Delete a labels context.
       
       \sa Z3_get_relevant_labels

        \deprecated This procedure is based on the old Solver API.

        def_API('Z3_del_literals', VOID, (_in(CONTEXT), _in(LITERALS)))
    */
    void Z3_API Z3_del_literals(__in Z3_context c, __in Z3_literals lbls);

    /**
       \brief Retrieve the number of label symbols that were returned.
       
       \sa Z3_get_relevant_labels

        \deprecated This procedure is based on the old Solver API.

        def_API('Z3_get_num_literals', UINT, (_in(CONTEXT), _in(LITERALS)))
    */
    unsigned Z3_API Z3_get_num_literals(__in Z3_context c, __in Z3_literals lbls);

    /**
       \brief Retrieve label symbol at idx.

       \deprecated This procedure is based on the old Solver API.

       def_API('Z3_get_label_symbol', SYMBOL, (_in(CONTEXT), _in(LITERALS), _in(UINT)))
    */
    Z3_symbol Z3_API Z3_get_label_symbol(__in Z3_context c, __in Z3_literals lbls, __in unsigned idx);

    /**
       \brief Retrieve literal expression at idx.

       \deprecated This procedure is based on the old Solver API.
       
       def_API('Z3_get_literal', AST, (_in(CONTEXT), _in(LITERALS), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_literal(__in Z3_context c, __in Z3_literals lbls, __in unsigned idx);

    /**
       \brief Disable label.
       
       The disabled label is not going to be used when blocking the subsequent search.

       \sa Z3_block_literals

       \deprecated This procedure is based on the old Solver API.

       def_API('Z3_disable_literal', VOID, (_in(CONTEXT), _in(LITERALS), _in(UINT)))
    */
    void Z3_API Z3_disable_literal(__in Z3_context c, __in Z3_literals lbls, __in unsigned idx);

    /**
       \brief Block subsequent checks using the remaining enabled labels.

       \deprecated This procedure is based on the old Solver API.

       def_API('Z3_block_literals', VOID, (_in(CONTEXT), _in(LITERALS)))
    */
    void Z3_API Z3_block_literals(__in Z3_context c, __in Z3_literals lbls);

    /*@}*/

    /**
       @name Deprecated Model API
     */
    /*@{*/

    /**
       \brief Return the number of constants assigned by the given model.
       
       \mlonly \remark Consider using {!get_model_constants}. \endmlonly

       \sa Z3_get_model_constant

       \deprecated use #Z3_model_get_num_consts

       def_API('Z3_get_model_num_constants', UINT, (_in(CONTEXT), _in(MODEL)))
    */
    unsigned Z3_API Z3_get_model_num_constants(__in Z3_context c, __in Z3_model m);

    /**
       \brief \mlh get_model_constant c m i \endmlh
       Return the i-th constant in the given model. 

       \mlonly \remark Consider using {!get_model_constants}. \endmlonly

       \pre i < Z3_get_model_num_constants(c, m)

       \deprecated use #Z3_model_get_const_decl

       def_API('Z3_get_model_constant', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_model_constant(__in Z3_context c, __in Z3_model m, __in unsigned i);
    
    /**
       \brief Return the number of function interpretations in the given model.
       
       A function interpretation is represented as a finite map and an 'else' value.
       Each entry in the finite map represents the value of a function given a set of arguments.

       \deprecated use #Z3_model_get_num_funcs

       def_API('Z3_get_model_num_funcs', UINT, (_in(CONTEXT), _in(MODEL)))
    */
    unsigned Z3_API Z3_get_model_num_funcs(__in Z3_context c, __in Z3_model m);
    
    /**
       \brief \mlh get_model_func_decl c m i \endmlh
       Return the declaration of the i-th function in the given model.

       \pre i < Z3_get_model_num_funcs(c, m)

       \sa Z3_get_model_num_funcs

       \deprecated use #Z3_model_get_func_decl

       def_API('Z3_get_model_func_decl', FUNC_DECL, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_func_decl Z3_API Z3_get_model_func_decl(__in Z3_context c, __in Z3_model m, __in unsigned i);

    /**
       \brief Return the value of the given constant or function 
       in the given model.
       
       \deprecated Consider using #Z3_model_eval or #Z3_model_get_func_interp

       def_API('Z3_eval_func_decl', BOOL, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL), _out(AST)))
    */
    Z3_bool Z3_API Z3_eval_func_decl(__in Z3_context c, __in Z3_model m, __in Z3_func_decl decl, __out Z3_ast* v);

    /**
       \brief \mlh is_array_value c v \endmlh
       Determine whether the term encodes an array value.       
       A term encodes an array value if it is a nested sequence of 
       applications of store on top of a constant array.
       The indices to the stores have to be values (for example, integer constants)
       so that equality between the indices can be evaluated.
       Array values are useful for representing interpretations for arrays.
              
       Return the number of entries mapping to non-default values of the array.

       \deprecated Use #Z3_is_as_array

       def_API('Z3_is_array_value', BOOL, (_in(CONTEXT), _in(MODEL), _in(AST), _out(UINT)))
    */
    Z3_bool Z3_API Z3_is_array_value(__in Z3_context c, __in Z3_model m, __in Z3_ast v, __out unsigned* num_entries);

    /**
       \brief \mlh get_array_value c v \endmlh
       An array values is represented as a dictionary plus a
       default (else) value. This function returns the array graph.

       \pre Z3_TRUE == Z3_is_array_value(c, v, &num_entries)       

       \deprecated Use Z3_func_interp objects and #Z3_get_as_array_func_decl

       def_API('Z3_get_array_value', VOID, (_in(CONTEXT), _in(MODEL), _in(AST), _in(UINT), _out_array(3, AST), _out_array(3, AST), _out (AST)))
    */
    void Z3_API Z3_get_array_value(__in Z3_context c, 
                                   __in Z3_model m,
                                   __in Z3_ast v,
                                   __in unsigned num_entries,
                                   __inout_ecount(num_entries) Z3_ast indices[],
                                   __inout_ecount(num_entries) Z3_ast values[],
                                   __out Z3_ast* else_value
                                   );

    /**
       \brief \mlh get_model_func_else c m i \endmlh
       Return the 'else' value of the i-th function interpretation in the given model.
 
       A function interpretation is represented as a finite map and an 'else' value.

       \mlonly \remark Consider using {!get_model_funcs}. \endmlonly
       
       \pre i < Z3_get_model_num_funcs(c, m)

       \sa Z3_get_model_num_funcs
       \sa Z3_get_model_func_num_entries
       \sa Z3_get_model_func_entry_num_args
       \sa Z3_get_model_func_entry_arg

       \deprecated Use Z3_func_interp objects

       def_API('Z3_get_model_func_else', AST, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_model_func_else(__in Z3_context c, __in Z3_model m, __in unsigned i);

    /**
       \brief \mlh get_model_func_num_entries c m i \endmlh
       Return the number of entries of the i-th function interpretation in the given model.
 
       A function interpretation is represented as a finite map and an 'else' value.

       \mlonly \remark Consider using {!get_model_funcs}. \endmlonly
       
       \pre i < Z3_get_model_num_funcs(c, m)

       \sa Z3_get_model_num_funcs
       \sa Z3_get_model_func_else
       \sa Z3_get_model_func_entry_num_args
       \sa Z3_get_model_func_entry_arg

       \deprecated Use Z3_func_interp objects

       def_API('Z3_get_model_func_num_entries', UINT, (_in(CONTEXT), _in(MODEL), _in(UINT)))
    */
    unsigned Z3_API Z3_get_model_func_num_entries(__in Z3_context c, __in Z3_model m, __in unsigned i);
    
    /**
       \brief \mlh get_model_func_entry_num_args c m i j \endmlh
       Return the number of arguments of the j-th entry of the i-th function interpretation in the given
       model.

       A function interpretation is represented as a finite map and an 'else' value.
       This function returns the j-th entry of this map.
      
       An entry represents the value of a function given a set of arguments.
       \conly That is: it has the following format <tt>f(args[0],...,args[num_args - 1]) = val</tt>.

       \mlonly \remark Consider using {!get_model_funcs}. \endmlonly

       \pre i < Z3_get_model_num_funcs(c, m)
       \pre j < Z3_get_model_func_num_entries(c, m, i)

       \sa Z3_get_model_num_funcs
       \sa Z3_get_model_func_num_entries 
       \sa Z3_get_model_func_entry_arg

       \deprecated Use Z3_func_interp objects

       def_API('Z3_get_model_func_entry_num_args', UINT, (_in(CONTEXT), _in(MODEL), _in(UINT), _in(UINT)))
    */
    unsigned Z3_API Z3_get_model_func_entry_num_args(__in Z3_context c,
                                                     __in Z3_model m,
                                                     __in unsigned i,
                                                     __in unsigned j);
    
    /**
       \brief \mlh get_model_func_entry_arg c m i j k \endmlh
       Return the k-th argument of the j-th entry of the i-th function interpretation in the given
       model.

       A function interpretation is represented as a finite map and an 'else' value.
       This function returns the j-th entry of this map.
      
       An entry represents the value of a function given a set of arguments.
       \conly That is: it has the following format <tt>f(args[0],...,args[num_args - 1]) = val</tt>.

       \mlonly \remark Consider using {!get_model_funcs}. \endmlonly

       \pre i < Z3_get_model_num_funcs(c, m)
       \pre j < Z3_get_model_func_num_entries(c, m, i)
       \pre k < Z3_get_model_func_entry_num_args(c, m, i, j)

       \sa Z3_get_model_num_funcs
       \sa Z3_get_model_func_num_entries 
       \sa Z3_get_model_func_entry_num_args

       \deprecated Use Z3_func_interp objects

       def_API('Z3_get_model_func_entry_arg', AST, (_in(CONTEXT), _in(MODEL), _in(UINT), _in(UINT), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_model_func_entry_arg(__in Z3_context c,
                                                __in Z3_model m,
                                                __in unsigned i,
                                                __in unsigned j,
                                                __in unsigned k);
    
    /**
       \brief \mlh get_model_func_entry_value c m i j \endmlh
       Return the return value of the j-th entry of the i-th function interpretation in the given
       model.

       A function interpretation is represented as a finite map and an 'else' value.
       This function returns the j-th entry of this map.
      
       An entry represents the value of a function given a set of arguments.
       \conly That is: it has the following format <tt>f(args[0],...,args[num_args - 1]) = val</tt>.

       \mlonly \remark Consider using {!get_model_funcs}. \endmlonly

       \pre i < Z3_get_model_num_funcs(c, m)
       \pre j < Z3_get_model_func_num_entries(c, m, i)

       \sa Z3_get_model_num_funcs
       \sa Z3_get_model_func_num_entries 

       \deprecated Use Z3_func_interp objects

       def_API('Z3_get_model_func_entry_value', AST, (_in(CONTEXT), _in(MODEL), _in(UINT), _in(UINT)))
    */
    Z3_ast Z3_API Z3_get_model_func_entry_value(__in Z3_context c,
                                                  __in Z3_model m,
                                                  __in unsigned i,
                                                  __in unsigned j);
    
    /**
       \brief \mlh eval c m t \endmlh
       Evaluate the AST node \c t in the given model. 
       \conly Return \c Z3_TRUE if succeeded, and store the result in \c v.
       \mlonly Return a pair: Boolean and value. The Boolean is true if the term was successfully evaluated. \endmlonly

       The evaluation may fail for the following reasons:

       - \c t contains a quantifier.

       - the model \c m is partial, that is, it doesn't have a complete interpretation for uninterpreted functions. 
         That is, the option <tt>MODEL_PARTIAL=true</tt> was used.

       - \c t is type incorrect.

       \deprecated Use #Z3_model_eval

       def_API('Z3_eval', BOOL, (_in(CONTEXT), _in(MODEL), _in(AST), _out(AST)))
    */
    Z3_bool Z3_API Z3_eval(__in Z3_context c, __in Z3_model m, __in Z3_ast t, __out Z3_ast * v);

    /**
       \brief Evaluate declaration given values.

       Provides direct way to evaluate declarations
       without going over terms.
    
       \deprecated Consider using #Z3_model_eval and #Z3_substitute_vars

       def_API('Z3_eval_decl', BOOL, (_in(CONTEXT), _in(MODEL), _in(FUNC_DECL), _in(UINT), _in_array(3, AST), _out(AST)))
    */
    Z3_bool Z3_API Z3_eval_decl(__in Z3_context c, __in Z3_model m, 
                                __in Z3_func_decl d, 
                                __in unsigned num_args,
                                __in_ecount(num_args) Z3_ast const args[],
                                __out Z3_ast* v);

    /*@}*/

    /**
       @name Deprecated String conversion API
    */
    /*@{*/

    /**
       \brief Convert the given logical context into a string.
       
       This function is mainly used for debugging purposes. It displays
       the internal structure of a logical context.

       \conly \warning The result buffer is statically allocated by Z3. It will
       \conly be automatically deallocated when #Z3_del_context is invoked.
       \conly So, the buffer is invalidated in the next call to \c Z3_context_to_string.

       \deprecated This method is obsolete. It just displays the internal representation of 
       the global solver available for backward compatibility reasons.

       def_API('Z3_context_to_string', STRING, (_in(CONTEXT),))
    */
    Z3_string Z3_API Z3_context_to_string(__in Z3_context c);

    /**
       \brief Return runtime statistics as a string.
       
       This function is mainly used for debugging purposes. It displays
       statistics of the search activity.

       \conly \warning The result buffer is statically allocated by Z3. It will
       \conly be automatically deallocated when #Z3_del_context is invoked.
       \conly So, the buffer is invalidated in the next call to \c Z3_context_to_string.

       \deprecated This method is based on the old solver API. 
       Use #Z3_stats_to_string when using the new solver API.

       def_API('Z3_statistics_to_string', STRING, (_in(CONTEXT),))
    */
    Z3_string Z3_API Z3_statistics_to_string(__in Z3_context c);

    /**
       \brief Extract satisfying assignment from context as a conjunction.
       
       This function can be used for debugging purposes. It returns a conjunction
       of formulas that are assigned to true in the current context.
       This conjunction will contain not only the assertions that are set to true
       under the current assignment, but will also include additional literals
       if there has been a call to #Z3_check or #Z3_check_and_get_model.       
       
       \deprecated This method is based on the old solver API.
    
       def_API('Z3_get_context_assignment', AST, (_in(CONTEXT),))
    */
    Z3_ast Z3_API Z3_get_context_assignment(__in Z3_context c);

    /*@}*/
#endif


#ifndef CAMLIDL
#ifdef __cplusplus
};
#endif // __cplusplus
#else
}
#endif // CAMLIDL

/*@}*/

#endif