This file is indexed.

/usr/include/libwildmagic/Wm5Vector3.h is in libwildmagic-dev 5.13-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2010/10/01)

#ifndef WM5VECTOR3_H
#define WM5VECTOR3_H

#include "Wm5MathematicsLIB.h"
#include "Wm5Tuple.h"
#include "Wm5Math.h"

namespace Wm5
{

template <typename Real>
class Vector3 : public Tuple<3,Real>
{
public:
    // Construction.
    Vector3 ();  // uninitialized
    Vector3 (const Vector3& vec);
    Vector3 (const Tuple<3,Real>& tuple);
    Vector3 (Real x, Real y, Real z);

    // Assignment.
    Vector3& operator= (const Vector3& vec);
    Vector3& operator= (const Tuple<3,Real>& tuple);

    // Coordinate access.
    inline Real X () const;
    inline Real& X ();
    inline Real Y () const;
    inline Real& Y ();
    inline Real Z () const;
    inline Real& Z ();

    // Arithmetic operations.
    inline Vector3 operator+ (const Vector3& vec) const;
    inline Vector3 operator- (const Vector3& vec) const;
    inline Vector3 operator* (Real scalar) const;
    inline Vector3 operator/ (Real scalar) const;
    inline Vector3 operator- () const;

    // Arithmetic updates.
    inline Vector3& operator+= (const Vector3& vec);
    inline Vector3& operator-= (const Vector3& vec);
    inline Vector3& operator*= (Real scalar);
    inline Vector3& operator/= (Real scalar);

    // Vector3 operations.
    inline Real Length () const;
    inline Real SquaredLength () const;
    inline Real Dot (const Vector3& vec) const;
    inline Real Normalize (const Real epsilon = Math<Real>::ZERO_TOLERANCE);

    // Compute the axis-aligned bounding box of the points.
    static void ComputeExtremes (int numVectors, const Vector3* vectors,
        Vector3& vmin, Vector3& vmax);

    // The cross products are computed using the right-handed rule.  Be aware
    // that some graphics APIs use a left-handed rule.  If you have to compute
    // a cross product with these functions and send the result to the API
    // that expects left-handed, you will need to change sign on the vector
    // (replace each component value c by -c).
    Vector3 Cross (const Vector3& vec) const;
    Vector3 UnitCross (const Vector3& vec) const;

    // Gram-Schmidt orthonormalization.  Take linearly independent vectors
    // U, V, and W and compute an orthonormal set (unit length, mutually
    // perpendicular).
    static void Orthonormalize (Vector3& u, Vector3& v, Vector3& w);
    static void Orthonormalize (Vector3* v);

    // Input W must be a nonzero vector. The output is an orthonormal basis
    // {U,V,W}.  The input W is normalized by this function.  If you know
    // W is already unit length, use GenerateComplementBasis to compute U
    // and V.
    static void GenerateOrthonormalBasis (Vector3& u, Vector3& v, Vector3& w);

    // Input W must be a unit-length vector.  The output vectors {U,V} are
    // unit length and mutually perpendicular, and {U,V,W} is an orthonormal
    // basis.
    static void GenerateComplementBasis (Vector3& u, Vector3& v,
        const Vector3& w);

    // Compute the barycentric coordinates of the point V with respect to the
    // tetrahedron <V0,V1,V2,V3>, V = b0*V0 + b1*V1 + b2*V2 + b3*V3, where
    // b0 + b1 + b2 + b3 = 1.  The return value is 'true' iff {V0,V1,V2,V3} is
    // a linearly independent set.  Numerically, this is measured by
    // |det[V0 V1 V2 V3]| <= epsilon.  The values bary[...] are valid only
    // when the return value is 'true' but set to zero when the return value
    // is 'false'.
    bool GetBarycentrics (const Vector3& v0, const Vector3& v1,
        const Vector3& v2, const Vector3& v3, Real bary[4],
        const Real epsilon = (Real)0) const;

    struct Information
    {
        // The intrinsic dimension of the input set.  The parameter 'epsilon'
        // to the GetInformation function is used to provide a tolerance when
        // determining the dimension.
        int mDimension;

        // Axis-aligned bounding box of the input set.  The maximum range is
        // the larger of max[0]-min[0], max[1]-min[1], and max[2]-min[2].
        Real mMin[3], mMax[3];
        Real mMaxRange;

        // Coordinate system.  The origin is valid for any dimension d.  The
        // unit-length direction vector is valid only for 0 <= i < d.  The
        // extreme index is relative to the array of input points, and is also
        // valid only for 0 <= i < d.  If d = 0, all points are effectively
        // the same, but the use of an epsilon may lead to an extreme index
        // that is not zero.  If d = 1, all points effectively lie on a line
        // segment.  If d = 2, all points effectively line on a plane.  If
        // d = 3, the points are not coplanar.
        Vector3 mOrigin;
        Vector3 mDirection[3];

        // The indices that define the maximum dimensional extents.  The
        // values mExtreme[0] and mExtreme[1] are the indices for the points
        // that define the largest extent in one of the coordinate axis
        // directions.  If the dimension is 2, then mExtreme[2] is the index
        // for the point that generates the largest extent in the direction
        // perpendicular to the line through the points corresponding to
        // mExtreme[0] and mExtreme[1].  Furthermore, if the dimension is 3,
        // then mExtreme[3] is the index for the point that generates the
        // largest extent in the direction perpendicular to the triangle
        // defined by the other extreme points.  The tetrahedron formed by the
        // points V[extreme0], V[extreme1], V[extreme2], V[extreme3]> is
        // clockwise or counterclockwise, the condition stored in mExtremeCCW.
        int mExtreme[4];
        bool mExtremeCCW;
    };

    // The value of epsilon is used as a relative error when computing the
    // dimension of the point set.
    static void GetInformation (int numPoints, const Vector3* points,
        Real epsilon, Information& info);

    // Special vectors.
    WM5_MATHEMATICS_ITEM static const Vector3 ZERO;    // (0,0,0)
    WM5_MATHEMATICS_ITEM static const Vector3 UNIT_X;  // (1,0,0)
    WM5_MATHEMATICS_ITEM static const Vector3 UNIT_Y;  // (0,1,0)
    WM5_MATHEMATICS_ITEM static const Vector3 UNIT_Z;  // (0,0,1)
    WM5_MATHEMATICS_ITEM static const Vector3 ONE;     // (1,1,1)

protected:
    using Tuple<3,Real>::mTuple;
};

// Arithmetic operations.
template <typename Real>
inline Vector3<Real> operator* (Real scalar, const Vector3<Real>& vec);

// Debugging output.
template <typename Real>
std::ostream& operator<< (std::ostream& outFile, const Vector3<Real>& vec);

#include "Wm5Vector3.inl"

typedef Vector3<float> Vector3f;
typedef Vector3<double> Vector3d;

}

#endif