This file is indexed.

/usr/include/libwildmagic/Wm5Vector2.inl is in libwildmagic-dev 5.13-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/09/19)

//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>::Vector2 ()
{
    // Uninitialized for performance in array construction.
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>::Vector2 (const Vector2& vec)
{
    mTuple[0] = vec.mTuple[0];
    mTuple[1] = vec.mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>::Vector2 (const Tuple<2,Real>& tuple)
{
    mTuple[0] = tuple[0];
    mTuple[1] = tuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>::Vector2 (Real x, Real y)
{
    mTuple[0] = x;
    mTuple[1] = y;
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>& Vector2<Real>::operator= (const Vector2& vec)
{
    mTuple[0] = vec.mTuple[0];
    mTuple[1] = vec.mTuple[1];
    return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>& Vector2<Real>::operator= (const Tuple<2,Real>& tuple)
{
    mTuple[0] = tuple[0];
    mTuple[1] = tuple[1];
    return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::X () const
{
    return mTuple[0];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real& Vector2<Real>::X ()
{
    return mTuple[0];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::Y () const
{
    return mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real& Vector2<Real>::Y ()
{
    return mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator+ (const Vector2& vec) const
{
    return Vector2
    (
        mTuple[0] + vec.mTuple[0],
        mTuple[1] + vec.mTuple[1]
    );
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator- (const Vector2& vec) const
{
    return Vector2
    (
        mTuple[0] - vec.mTuple[0],
        mTuple[1] - vec.mTuple[1]
    );
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator* (Real scalar) const
{
    return Vector2
    (
        scalar*mTuple[0],
        scalar*mTuple[1]
    );
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator/ (Real scalar) const
{
    Vector2 result;

    if (scalar != (Real)0)
    {
        Real invScalar = ((Real)1)/scalar;
        result.mTuple[0] = invScalar*mTuple[0];
        result.mTuple[1] = invScalar*mTuple[1];
    }
    else
    {
        result.mTuple[0] = Math<Real>::MAX_REAL;
        result.mTuple[1] = Math<Real>::MAX_REAL;
    }

    return result;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator- () const
{
    return Vector2
    (
        -mTuple[0],
        -mTuple[1]
    );
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real>& Vector2<Real>::operator+= (const Vector2& vec)
{
    mTuple[0] += vec.mTuple[0];
    mTuple[1] += vec.mTuple[1];
    return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real>& Vector2<Real>::operator-= (const Vector2& vec)
{
    mTuple[0] -= vec.mTuple[0];
    mTuple[1] -= vec.mTuple[1];
    return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real>& Vector2<Real>::operator*= (Real scalar)
{
    mTuple[0] *= scalar;
    mTuple[1] *= scalar;
    return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real>& Vector2<Real>::operator/= (Real scalar)
{
    if (scalar != (Real)0)
    {
        Real invScalar = ((Real)1)/scalar;
        mTuple[0] *= invScalar;
        mTuple[1] *= invScalar;
    }
    else
    {
        mTuple[0] *= Math<Real>::MAX_REAL;
        mTuple[1] *= Math<Real>::MAX_REAL;
    }

    return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::Length () const
{
    return Math<Real>::Sqrt
    (
        mTuple[0]*mTuple[0] +
        mTuple[1]*mTuple[1]
    );
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::SquaredLength () const
{
    return
        mTuple[0]*mTuple[0] +
        mTuple[1]*mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::Dot (const Vector2& vec) const
{
    return
        mTuple[0]*vec.mTuple[0] +
        mTuple[1]*vec.mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::Normalize (const Real epsilon)
{
    Real length = Length();

    if (length > epsilon)
    {
        Real invLength = ((Real)1)/length;
        mTuple[0] *= invLength;
        mTuple[1] *= invLength;
    }
    else
    {
        length = (Real)0;
        mTuple[0] = (Real)0;
        mTuple[1] = (Real)0;
    }

    return length;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::Perp () const
{
    return Vector2
    (
        mTuple[1],
        -mTuple[0]
    );
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::UnitPerp () const
{
    Vector2 perp(mTuple[1], -mTuple[0]);
    perp.Normalize();
    return perp;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::DotPerp (const Vector2& vec) const
{
    return mTuple[0]*vec.mTuple[1] - mTuple[1]*vec.mTuple[0];
}
//----------------------------------------------------------------------------
template <typename Real>
void Vector2<Real>::ComputeExtremes (int numVectors, const Vector2* vectors,
    Vector2& vmin, Vector2& vmax)
{
    assertion(numVectors > 0 && vectors,
        "Invalid inputs to ComputeExtremes\n");

    vmin = vectors[0];
    vmax = vmin;
    for (int j = 1; j < numVectors; ++j)
    {
        const Vector2& vec = vectors[j];
        for (int i = 0; i < 2; ++i)
        {
            if (vec[i] < vmin[i])
            {
                vmin[i] = vec[i];
            }
            else if (vec[i] > vmax[i])
            {
                vmax[i] = vec[i];
            }
        }
    }
}
//----------------------------------------------------------------------------
template <typename Real>
void Vector2<Real>::Orthonormalize (Vector2& u, Vector2& v)
{
    // If the input vectors are v0 and v1, then the Gram-Schmidt
    // orthonormalization produces vectors u0 and u1 as follows,
    //
    //   u0 = v0/|v0|
    //   u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
    //
    // where |A| indicates length of vector A and A*B indicates dot
    // product of vectors A and B.

    // Compute u0.
    u.Normalize();

    // Compute u1.
    Real dot0 = u.Dot(v); 
    v -= u*dot0;
    v.Normalize();
}
//----------------------------------------------------------------------------
template <typename Real>
void Vector2<Real>::GenerateOrthonormalBasis (Vector2& u, Vector2& v)
{
    v.Normalize();
    u = v.Perp();
}
//----------------------------------------------------------------------------
template <typename Real>
bool Vector2<Real>::GetBarycentrics (const Vector2& v0, const Vector2& v1,
    const Vector2& v2, Real bary[3], Real epsilon) const
{
    // Compute the vectors relative to V2 of the triangle.
    Vector2 diff[3] = { v0 - v2, v1 - v2, *this - v2 };

    Real det = diff[0].DotPerp(diff[1]);
    if (Math<Real>::FAbs(det) > epsilon)
    {
        Real invDet = ((Real)1)/det;
        bary[0] = diff[2].DotPerp(diff[1])*invDet;
        bary[1] = diff[0].DotPerp(diff[2])*invDet;
        bary[2] = (Real)1 - bary[0] - bary[1];
        return true;
    }

    for (int i = 0; i < 3; ++i)
    {
        bary[i] = (Real)0;
    }

#ifdef WM5_ASSERT_ON_BARYCENTRIC2_DEGENERATE
    assertion(false, "Input triangle is degenerate.\n");
#endif
    return false;
}
//----------------------------------------------------------------------------
template <typename Real>
void Vector2<Real>::GetInformation (int numPoints, const Vector2* points,
    Real epsilon, Information& info)
{
    assertion(numPoints > 0 && points && epsilon >= (Real)0,
        "Invalid inputs to GetInformation\n");

    info.mExtremeCCW = false;

    // Compute the axis-aligned bounding box for the input points.  Keep track
    // of the indices into 'points' for the current min and max.
    int j, indexMin[2], indexMax[2];
    for (j = 0; j < 2; ++j)
    {
        info.mMin[j] = points[0][j];
        info.mMax[j] = info.mMin[j];
        indexMin[j] = 0;
        indexMax[j] = 0;
    }

    int i;
    for (i = 1; i < numPoints; ++i)
    {
        for (j = 0; j < 2; ++j)
        {
            if (points[i][j] < info.mMin[j])
            {
                info.mMin[j] = points[i][j];
                indexMin[j] = i;
            }
            else if (points[i][j] > info.mMax[j])
            {
                info.mMax[j] = points[i][j];
                indexMax[j] = i;
            }
        }
    }

    // Determine the maximum range for the bounding box.
    info.mMaxRange = info.mMax[0] - info.mMin[0];
    info.mExtreme[0] = indexMin[0];
    info.mExtreme[1] = indexMax[0];
    Real range = info.mMax[1] - info.mMin[1];
    if (range > info.mMaxRange)
    {
        info.mMaxRange = range;
        info.mExtreme[0] = indexMin[1];
        info.mExtreme[1] = indexMax[1];
    }

    // The origin is either the point of minimum x-value or point of
    // minimum y-value.
    info.mOrigin = points[info.mExtreme[0]];

    // Test whether the point set is (nearly) a point.
    if (info.mMaxRange < epsilon)
    {
        info.mDimension = 0;
        for (j = 0; j < 2; ++j)
        {
            info.mExtreme[j + 1] = info.mExtreme[0];
            info.mDirection[j][0] = (Real)0;
            info.mDirection[j][1] = (Real)0;
        }
        return;
    }

    // Test whether the point set is (nearly) a line segment.
    info.mDirection[0] = points[info.mExtreme[1]] - info.mOrigin;
    info.mDirection[0].Normalize();
    info.mDirection[1] = -info.mDirection[0].Perp();
    Real maxDistance = (Real)0;
    Real maxSign = (Real)0;
    info.mExtreme[2] = info.mExtreme[0];
    for (i = 0; i < numPoints; ++i)
    {
        Vector2 diff = points[i] - info.mOrigin;
        Real distance = info.mDirection[1].Dot(diff);
        Real sign = Math<Real>::Sign(distance);
        distance = Math<Real>::FAbs(distance);
        if (distance > maxDistance)
        {
            maxDistance = distance;
            maxSign = sign;
            info.mExtreme[2] = i;
        }
    }

    if (maxDistance < epsilon*info.mMaxRange)
    {
        info.mDimension = 1;
        info.mExtreme[2] = info.mExtreme[1];
        return;
    }

    info.mDimension = 2;
    info.mExtremeCCW = (maxSign > (Real)0);
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> operator* (Real scalar, const Vector2<Real>& vec)
{
    return Vector2<Real>
    (
        scalar*vec[0],
        scalar*vec[1]
    );
}
//----------------------------------------------------------------------------
template <typename Real>
std::ostream& operator<< (std::ostream& outFile, const Vector2<Real>& vec)
{
     return outFile << vec.X() << ' ' << vec.Y();
}
//----------------------------------------------------------------------------