This file is indexed.

/usr/include/libwildmagic/Wm5ContPointInPolygon2.h is in libwildmagic-dev 5.13-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#ifndef WM5CONTPOINTINPOLYGON2_H
#define WM5CONTPOINTINPOLYGON2_H

// Given a polygon as an order list of vertices (x[i],y[i]) for 0 <= i < N
// and a test point (xt,yt), return 'true' if (xt,yt) is in the polygon and
// 'false' if it is not.  All queries require that the number of vertices
// satisfies N >= 3.

#include "Wm5MathematicsLIB.h"
#include "Wm5Vector2.h"

namespace Wm5
{

template <typename Real>
class WM5_MATHEMATICS_ITEM PointInPolygon2
{
public:
    PointInPolygon2 (int numPoints, const Vector2<Real>* points);

    // Simple polygons (ray-intersection counting).
    bool Contains (const Vector2<Real>& p) const;

    // Algorithms for convex polygons.  The input polygons must have vertices
    // in counterclockwise order.

    // O(N) algorithm (which-side-of-edge tests)
    bool ContainsConvexOrderN (const Vector2<Real>& p) const;

    // O(log N) algorithm (bisection and recursion, like BSP tree)
    bool ContainsConvexOrderLogN (const Vector2<Real>& p) const;

    // The polygon must have exactly four vertices.  This method is like the
    // O(log N) and uses three which-side-of-segment test instead of four
    // which-side-of-edge tests.  If the polygon does not have four vertices,
    // the function returns false.
    bool ContainsQuadrilateral (const Vector2<Real>& p) const;

private:
    // For recursion in ContainsConvexOrderLogN.
    bool SubContainsPoint (const Vector2<Real>& p, int i0, int i1) const;

    int mNumPoints;
    const Vector2<Real>* mPoints;
};

typedef PointInPolygon2<float> PointInPolygon2f;
typedef PointInPolygon2<double> PointInPolygon2d;

}

#endif