This file is indexed.

/usr/include/libwildmagic/Wm5BSplineBasis.h is in libwildmagic-dev 5.13-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2010/12/11)

#ifndef WM5BSPLINEBASIS_H
#define WM5BSPLINEBASIS_H

#include "Wm5MathematicsLIB.h"
#include "Wm5Math.h"

namespace Wm5
{

template <typename Real>
class WM5_MATHEMATICS_ITEM BSplineBasis
{
public:
    // Default constructor.  The number of control points is n+1 and the
    // indices i for the control points satisfy 0 <= i <= n.  The degree of
    // the curve is d.  The knot array has n+d+2 elements.  Whether uniform
    // or nonuniform knots, it is required that
    //   knot[i] = 0, 0 <= i <= d
    //   knot[i] = 1, n+1 <= i <= n+d+1
    // BSplineBasis enforces these conditions by not exposing SetKnot for the
    // relevant values of i.
    BSplineBasis ();

    // Open uniform or periodic uniform.  The knot array is internally
    // generated with equally spaced elements.  It is required that
    //   knot[i] = (i-d)/(n+1-d), d+1 <= i <= n
    // BSplineBasis enforces these conditions by not exposing SetKnot for the
    // relevant values of i.  GetKnot(j) will return knot[i] for i = j+d+1.
    BSplineBasis (int numCtrlPoints, int degree, bool open);
    void Create (int numCtrlPoints, int degree, bool open);

    // Open nonuniform.  The interiorKnot array must have n-d nondecreasing
    // elements in the interval [0,1].  The values are
    //   knot[i] = interiorKnot[j]
    // with 0 <= j <= n-d-1 and i = j+d+1, so d+1 <= i <= n.  The caller is
    // responsible for interiorKnot if it was dynamically allocated.  An
    // internal copy is made, so to dynamically change knots you must use
    // the SetKnot(j,*) function.
    BSplineBasis (int numCtrlPoints, int degree, const Real* interiorKnot);
    void Create (int numCtrlPoints, int degree, const Real* interiorKnot);

    virtual ~BSplineBasis ();

    int GetNumCtrlPoints () const;
    int GetDegree () const;
    bool IsOpen () const;
    bool IsUniform () const;

    // For a nonuniform spline, the knot[i] are modified by SetKnot(j,value)
    // for j = i+d+1.  That is, you specify j with 0 <= j <= n-d-1, i = j+d+1,
    // and knot[i] = value.  SetKnot(j,value) does nothing for indices outside
    // the j-range or for uniform splines.  GetKnot(j) returns knot[i]
    // regardless of whether the spline is uniform or nonuniform.
    void SetKnot (int j, Real knot);
    Real GetKnot (int j) const;

    // Access basis functions and their derivatives.
    Real GetD0 (int i) const;
    Real GetD1 (int i) const;
    Real GetD2 (int i) const;
    Real GetD3 (int i) const;

    // Evaluate basis functions and their derivatives.
    void Compute (Real t, unsigned int order, int& minIndex,
        int& maxIndex) const;

protected:
    int Initialize (int numCtrlPoints, int degree, bool open);
    Real** Allocate () const;
    void Deallocate (Real** data);

    // Determine knot index i for which knot[i] <= rfTime < knot[i+1].
    int GetKey (Real& t) const;

    int mNumCtrlPoints;   // n+1
    int mDegree;          // d
    Real* mKnot;          // knot[n+d+2]
    bool mOpen, mUniform;

    // Storage for the basis functions and their derivatives first three
    // derivatives.  The basis array is always allocated by the constructor
    // calls.  A derivative basis array is allocated on the first call to a
    // derivative member function.
    Real** mBD0;          // bd0[d+1][n+d+1]
    mutable Real** mBD1;  // bd1[d+1][n+d+1]
    mutable Real** mBD2;  // bd2[d+1][n+d+1]
    mutable Real** mBD3;  // bd3[d+1][n+d+1]
};

typedef BSplineBasis<float> BSplineBasisf;
typedef BSplineBasis<double> BSplineBasisd;

}

#endif