This file is indexed.

/usr/include/wfmath-1.0/wfmath/rotmatrix.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// rotmatrix.h (RotMatrix<> class definition)
//
//  The WorldForge Project
//  Copyright (C) 2001  The WorldForge Project
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//  For information about WorldForge and its authors, please contact
//  the Worldforge Web Site at http://www.worldforge.org.

// Author: Ron Steinke
// Created: 2001-12-7

#ifndef WFMATH_ROTMATRIX_H
#define WFMATH_ROTMATRIX_H

#include <wfmath/const.h>

#include <iosfwd>

namespace WFMath {

/// returns m1 * m2
template<int dim> // m1 * m2
RotMatrix<dim> Prod(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
/// returns m1 * m2^-1
template<int dim> // m1 * m2^-1
RotMatrix<dim> ProdInv(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
/// returns m1^-1 * m2
template<int dim> // m1^-1 * m2
RotMatrix<dim> InvProd(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
/// returns m1^-1 * m2^-1
template<int dim> // m1^-1 * m2^-1
RotMatrix<dim> InvProdInv(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);

template<int dim> // m * v
Vector<dim> Prod(const RotMatrix<dim>& m, const Vector<dim>& v);
template<int dim> // m^-1 * v
Vector<dim> InvProd(const RotMatrix<dim>& m, const Vector<dim>& v);
template<int dim> // v * m
Vector<dim> Prod(const Vector<dim>& v, const RotMatrix<dim>& m);
template<int dim> // v * m^-1
Vector<dim> ProdInv(const Vector<dim>& v, const RotMatrix<dim>& m);

/// returns m1 * m2
template<int dim>
RotMatrix<dim> operator*(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
template<int dim>
Vector<dim> operator*(const RotMatrix<dim>& m, const Vector<dim>& v);
template<int dim>
Vector<dim> operator*(const Vector<dim>& v, const RotMatrix<dim>& m);

template<int dim>
std::ostream& operator<<(std::ostream& os, const RotMatrix<dim>& m);
template<int dim>
std::istream& operator>>(std::istream& is, RotMatrix<dim>& m);

/// A dim dimensional rotation matrix. Technically, a member of the group O(dim).
/**
 * Elements of this class represent rotation matrices. The NxN dimensional
 * rotation matrices form a group called O(N), the orthogonal
 * matrices. They satisfy the following condition:
 *
 *  They are orthogonal. That is, their transpose is equal to their inverse.
 *  Hence, this class does not implement a transpose() method, only an
 *  inverse().
 *
 * A general N dimensional matrix of this type has N(N-1)/2 degrees of freedom.
 * This gives one rotation angle in 2D, the three Euler angles in 3D, etc.
 *
 * This class implements the 'generic' subset of the interface in
 * the fake class Shape.
 **/
template<int dim = 3>
class RotMatrix {
 public:
  ///
  RotMatrix() : m_flip(false), m_valid(false), m_age(0) {}
  ///
  RotMatrix(const RotMatrix& m);

  friend std::ostream& operator<< <dim>(std::ostream& os, const RotMatrix& m);
  friend std::istream& operator>> <dim>(std::istream& is, RotMatrix& m);

  RotMatrix& operator=(const RotMatrix& m);
  // No operator=(CoordType d[dim][dim]), since it can fail.
  // Use setVals() instead.

  bool isEqualTo(const RotMatrix& m, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;

  bool operator==(const RotMatrix& m) const {return isEqualTo(m);}
  bool operator!=(const RotMatrix& m) const {return !isEqualTo(m);}

  bool isValid() const {return m_valid;}

  /// set the matrix to the identity matrix
  RotMatrix& identity();

  /// get the (i, j) element of the matrix
  CoordType elem(const int i, const int j) const {return m_elem[i][j];}

  /// Set the values of the elements of the matrix
  /**
   * Can't set one element at a time and keep it an O(N) matrix,
   * but can try to set all values at once, and see if they match.
   * This fails if the passed matrix is not orthogonal within the
   * passed precision, and orthogonalizes the matrix to within
   * precision WFMATH_EPSILON.
   **/
  bool setVals(const CoordType vals[dim][dim], CoordType precision = numeric_constants<CoordType>::epsilon());
  /// Set the values of the elements of the matrix
  /**
   * Can't set one element at a time and keep it an O(N) matrix,
   * but can try to set all values at once, and see if they match.
   * This fails if the passed matrix is not orthogonal within the
   * passed precision, and orthogonalizes the matrix to within
   * precision WFMATH_EPSILON.
   **/
  bool setVals(const CoordType vals[dim*dim], CoordType precision = numeric_constants<CoordType>::epsilon());

  /// Get a copy of the i'th row as a Vector
  Vector<dim> row(const int i) const;
  /// Get a copy of the i'th column as a Vector
  Vector<dim> column(const int i) const;

  /// Get the trace of the matrix
  CoordType trace() const;
  /// Get the determinant of the matrix
  /**
   * Since the matrix is orthogonal, the determinant is always either 1 or -1.
   **/
  CoordType determinant() const {return (m_flip ? -1.f : 1.f);}
  /// Get the inverse of the matrix
  /**
   * Since the matrix is orthogonal, the inverse is equal to the transpose.
   **/
  RotMatrix inverse() const;
  /// Get the parity of the matrix
  /**
   * Returns true for odd parity, false for even.
   **/
  bool parity() const {return m_flip;}

  // documented outside the class

  friend RotMatrix Prod<dim>	   (const RotMatrix& m1, const RotMatrix& m2);
  friend RotMatrix ProdInv<dim>	   (const RotMatrix& m1, const RotMatrix& m2);
  friend RotMatrix InvProd<dim>	   (const RotMatrix& m1, const RotMatrix& m2);
  friend RotMatrix InvProdInv<dim> (const RotMatrix& m1, const RotMatrix& m2);
  friend Vector<dim> Prod<dim>	   (const RotMatrix& m, const Vector<dim>& v);
  friend Vector<dim> InvProd<dim>  (const RotMatrix& m, const Vector<dim>& v);

  // Set the value to a given rotation

  /// set the matrix to a rotation by the angle theta in the (i, j) plane
  RotMatrix& rotation	(const int i, const int j, CoordType theta);
  /// set the matrix to a rotation by the angle theta in the v1, v2 plane
  /**
   * Throws CollinearVectors if v1 and v2 are parallel
   **/
  RotMatrix& rotation	(const Vector<dim>& v1, const Vector<dim>& v2,
			 CoordType theta);
  /// set the matrix to a rotation which will move "from" to lie parallel to "to"
  /**
   * Throws CollinearVectors if v1 and v2 are antiparallel (parallel but
   * pointing in opposite directions). If v1 and v2 point in the
   * same direction, the matrix is set to the identity.
   **/
  RotMatrix& rotation	(const Vector<dim>& from, const Vector<dim>& to);

  // Set the value to mirror image about a certain axis

  /// set the matrix to a mirror perpendicular to the i'th axis
  RotMatrix& mirror(const int i);
  /// set the matrix to a mirror perpendicular to the Vector v
  RotMatrix& mirror(const Vector<dim>& v);
  /// set the matrix to mirror all axes
  /**
   * This is a good parity operator if dim is odd.
   **/
  RotMatrix& mirror();

  /// rotate the matrix using another matrix
  RotMatrix& rotate(const RotMatrix& m) {return *this = Prod(*this, m);}

  /// normalize to remove accumulated round-off error
  void normalize();
  /// current round-off age
  unsigned age() const {return m_age;}

  // 2D/3D stuff

  /// 3D only: Construct a RotMatrix from a Quaternion
  /**
   * since Quaternions can only specify parity-even
   * rotations, you can pass the return value of
   * Quaternion::fromRotMatrix() as not_flip to
   * recover the full RotMatrix
   **/
  RotMatrix(const Quaternion& q, const bool not_flip = true);

  /// 2D only: Construct a RotMatrix from an angle theta
  RotMatrix& rotation(CoordType theta)
	{return rotation(0, 1, theta);}

  /// 3D only: set a RotMatrix to a rotation about the x axis by angle theta
  RotMatrix& rotationX(CoordType theta) {return rotation(1, 2, theta);}
  /// 3D only: set a RotMatrix to a rotation about the y axis by angle theta
  RotMatrix& rotationY(CoordType theta) {return rotation(2, 0, theta);}
  /// 3D only: set a RotMatrix to a rotation about the z axis by angle theta
  RotMatrix& rotationZ(CoordType theta) {return rotation(0, 1, theta);}
  /// 3D only: set a RotMatrix to a rotation about the axis given by the Vector
  RotMatrix& rotation(const Vector<dim>& axis, CoordType theta);
  /// 3D only: set a RotMatrix to a rotation about the axis given by the Vector
  /**
   * the rotation angle is taken from the Vector's magnitude
   **/
  RotMatrix& rotation(const Vector<dim>& axis); // angle taken from magnitude of axis

  /// 3D only: set a RotMatrix from a Quaternion
  /**
   * since Quaternions can only specify parity-even
   * rotations, you can pass the return value of
   * Quaternion::fromRotMatrix() as not_flip to
   * recover the full RotMatrix
   **/
  RotMatrix& fromQuaternion(const Quaternion& q, const bool not_flip = true);

  /// rotate the matrix using the quaternion
  RotMatrix& rotate(const Quaternion&);

  /// set a RotMatrix to a mirror perpendicular to the x axis
  RotMatrix& mirrorX()	{return mirror(0);}
  /// set a RotMatrix to a mirror perpendicular to the y axis
  RotMatrix& mirrorY()	{return mirror(1);}
  /// set a RotMatrix to a mirror perpendicular to the z axis
  RotMatrix& mirrorZ();

 private:
  CoordType m_elem[dim][dim];
  bool m_flip; // True if the matrix is parity odd
  bool m_valid;
  unsigned m_age;

  // Backend to setVals() above, also used in fromStream()
  bool _setVals(CoordType *vals, CoordType precision = numeric_constants<CoordType>::epsilon());
  void checkNormalization() {if(m_age >= WFMATH_MAX_NORM_AGE && m_valid) normalize();}
};

template<>
inline RotMatrix<3>& RotMatrix<3>::mirrorZ()
{
  return mirror(2);
}

template<int dim>
inline RotMatrix<dim>& RotMatrix<dim>::mirror(const int i)
{
  identity();
  m_elem[i][i] = -1;
  m_flip = true;
  // m_valid and m_age already set correctly

  return *this;
}

} // namespace WFMath

#endif // WFMATH_ROTMATRIX_H