/usr/include/wfmath-1.0/wfmath/rotbox.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | // rotbox.h (A box with arbitrary orientation)
//
// The WorldForge Project
// Copyright (C) 2000, 2001 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
//
// Author: Ron Steinke
#ifndef WFMATH_ROT_BOX_H
#define WFMATH_ROT_BOX_H
#include <wfmath/point.h>
#include <wfmath/rotmatrix.h>
#include <wfmath/intersect_decls.h>
namespace WFMath {
template<int dim>
std::ostream& operator<<(std::ostream& os, const RotBox<dim>& r);
template<int dim>
std::istream& operator>>(std::istream& is, RotBox<dim>& r);
/// A dim dimensional box, lying at an arbitrary angle
/**
* This class implements the full shape interface, as described in
* the fake class Shape.
**/
template<int dim = 3>
class RotBox
{
public:
/// construct an uninitialized box
RotBox() : m_corner0(), m_size(), m_orient() {}
/// construct a box from the given parameters
/**
* p gives corner 0 of the box, size gives the offset from corner
* 0 to the opposite corner (corner 2^dim - 1), orientation gives
* the rotation of the box relative to the coordinate axes
**/
RotBox(const Point<dim>& p, const Vector<dim>& size,
const RotMatrix<dim>& orientation) : m_corner0(p), m_size(size),
m_orient(orientation) {}
/// construct a copy of the box
RotBox(const RotBox& b) : m_corner0(b.m_corner0), m_size(b.m_size),
m_orient(b.m_orient) {}
/// Construct a rotbox from an object passed by Atlas
explicit RotBox(const AtlasInType& a);
~RotBox() {}
/// Create an Atlas object from the box
AtlasOutType toAtlas() const;
/// Set the box's value to that given by an Atlas object
void fromAtlas(const AtlasInType& a);
friend std::ostream& operator<< <dim>(std::ostream& os, const RotBox& r);
friend std::istream& operator>> <dim>(std::istream& is, RotBox& r);
RotBox& operator=(const RotBox& s);
bool isEqualTo(const RotBox& b, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
bool operator==(const RotBox& b) const {return isEqualTo(b);}
bool operator!=(const RotBox& b) const {return !isEqualTo(b);}
bool isValid() const {return m_corner0.isValid() && m_size.isValid()
&& m_orient.isValid();}
// Descriptive characteristics
size_t numCorners() const {return 1 << dim;}
Point<dim> getCorner(size_t i) const;
Point<dim> getCenter() const {return m_corner0 + Prod(m_size / 2, m_orient);}
/// returns the base corner of the box
const Point<dim>& corner0() const {return m_corner0;}
/// returns the base corner of the box
Point<dim>& corner0() {return m_corner0;}
/// returns the size of the box
const Vector<dim>& size() const {return m_size;}
/// returns the size of the box
Vector<dim>& size() {return m_size;}
/// returns the orientation of the box
const RotMatrix<dim>& orientation() const {return m_orient;}
/// returns the orientation of the box
RotMatrix<dim>& orientation() {return m_orient;}
// Movement functions
RotBox& shift(const Vector<dim>& v)
{m_corner0 += v; return *this;}
RotBox& moveCornerTo(const Point<dim>& p, size_t corner)
{return shift(p - getCorner(corner));}
RotBox& moveCenterTo(const Point<dim>& p)
{return shift(p - getCenter());}
RotBox& rotateCorner(const RotMatrix<dim>& m, size_t corner)
{rotatePoint(m, getCorner(corner)); return *this;}
RotBox& rotateCenter(const RotMatrix<dim>& m)
{rotatePoint(m, getCenter()); return *this;}
RotBox& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p)
{m_orient = Prod(m_orient, m); m_corner0.rotate(m, p); return *this;}
// 3D rotation functions
RotBox& rotateCorner(const Quaternion& q, size_t corner);
RotBox& rotateCenter(const Quaternion& q);
RotBox& rotatePoint(const Quaternion& q, const Point<dim>& p);
// Intersection functions
AxisBox<dim> boundingBox() const;
Ball<dim> boundingSphere() const
{return Ball<dim>(getCenter(), m_size.mag() / 2);}
Ball<dim> boundingSphereSloppy() const
{return Ball<dim>(getCenter(), m_size.sqrMag() / 2);}
RotBox toParentCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{return RotBox(m_corner0.toParentCoords(origin, rotation), m_size,
m_orient * rotation);}
RotBox toParentCoords(const AxisBox<dim>& coords) const
{return RotBox(m_corner0.toParentCoords(coords), m_size, m_orient);}
RotBox toParentCoords(const RotBox<dim>& coords) const
{return RotBox(m_corner0.toParentCoords(coords), m_size,
m_orient * coords.m_orient);}
// toLocal is just like toParent, expect we reverse the order of
// translation and rotation and use the opposite sense of the rotation
// matrix
RotBox toLocalCoords(const Point<dim>& origin,
const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
{return RotBox(m_corner0.toLocalCoords(origin, rotation), m_size,
rotation * m_orient);}
RotBox toLocalCoords(const AxisBox<dim>& coords) const
{return RotBox(m_corner0.toLocalCoords(coords), m_size, m_orient);}
RotBox toLocalCoords(const RotBox<dim>& coords) const
{return RotBox(m_corner0.toLocalCoords(coords), m_size,
coords.m_orient * m_orient);}
// 3D only
RotBox toParentCoords(const Point<dim>& origin, const Quaternion& rotation) const;
RotBox toLocalCoords(const Point<dim>& origin, const Quaternion& rotation) const;
friend bool Intersect<dim>(const RotBox& r, const Point<dim>& p, bool proper);
friend bool Contains<dim>(const Point<dim>& p, const RotBox& r, bool proper);
friend bool Intersect<dim>(const RotBox& r, const AxisBox<dim>& b, bool proper);
friend bool Contains<dim>(const RotBox& r, const AxisBox<dim>& b, bool proper);
friend bool Contains<dim>(const AxisBox<dim>& b, const RotBox& r, bool proper);
friend bool Intersect<dim>(const RotBox& r, const Ball<dim>& b, bool proper);
friend bool Contains<dim>(const RotBox& r, const Ball<dim>& b, bool proper);
friend bool Contains<dim>(const Ball<dim>& b, const RotBox& r, bool proper);
friend bool Intersect<dim>(const RotBox& r, const Segment<dim>& s, bool proper);
friend bool Contains<dim>(const RotBox& r, const Segment<dim>& s, bool proper);
friend bool Contains<dim>(const Segment<dim>& s, const RotBox& r, bool proper);
friend bool Intersect<dim>(const RotBox& r1, const RotBox& r2, bool proper);
friend bool Contains<dim>(const RotBox& outer, const RotBox& inner, bool proper);
friend bool Intersect<dim>(const Polygon<dim>& p, const RotBox& r, bool proper);
friend bool Contains<dim>(const Polygon<dim>& p, const RotBox& r, bool proper);
friend bool Contains<dim>(const RotBox& r, const Polygon<dim>& p, bool proper);
private:
Point<dim> m_corner0;
Vector<dim> m_size;
RotMatrix<dim> m_orient;
};
template<int dim>
inline RotBox<dim>& RotBox<dim>::operator=(const RotBox<dim>& a)
{
m_corner0 = a.m_corner0;
m_size = a.m_size;
m_orient = a.m_orient;
return *this;
}
template<int dim>
inline bool RotBox<dim>::isEqualTo(const RotBox<dim>& b, CoordType epsilon) const
{
return Equal(m_corner0, b.m_corner0, epsilon)
&& Equal(m_size, b.m_size, epsilon)
&& Equal(m_orient, b.m_orient, epsilon);
}
} // namespace WFMath
#endif // WFMATH_ROT_BOX_H
|