This file is indexed.

/usr/include/wfmath-1.0/wfmath/intersect.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// intersect.h (Shape intersection functions)
//
//  The WorldForge Project
//  Copyright (C) 2002  The WorldForge Project
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//  For information about WorldForge and its authors, please contact
//  the Worldforge Web Site at http://www.worldforge.org.
//

#ifndef WFMATH_INTERSECT_H
#define WFMATH_INTERSECT_H

#include <wfmath/vector.h>
#include <wfmath/point.h>
#include <wfmath/const.h>
#include <wfmath/intersect_decls.h>
#include <wfmath/axisbox.h>
#include <wfmath/ball.h>
#include <wfmath/segment.h>
#include <wfmath/rotbox.h>

#include <cmath>

namespace WFMath {

// Get the reversed order intersect functions (is this safe? FIXME)
// No it's not. In the case of an unknown intersection we end up in
// a stack crash loop.

template<class S1, class S2>
inline bool Intersect(const S1& s1, const S2& s2, bool proper)
{
  return Intersect(s2, s1, proper);
}

// Point<>

template<int dim>
inline bool Intersect(const Point<dim>& p1, const Point<dim>& p2, bool proper)
{
  return !proper && p1 == p2;
}

template<int dim, class S>
inline bool Contains(const S& s, const Point<dim>& p, bool proper)
{
  return Intersect(p, s, proper);
}

template<int dim>
inline bool Contains(const Point<dim>& p1, const Point<dim>& p2, bool proper)
{
  return !proper && p1 == p2;
}

// AxisBox<>

template<int dim>
inline bool Intersect(const AxisBox<dim>& b, const Point<dim>& p, bool proper)
{
  for(int i = 0; i < dim; ++i)
    if(_Greater(b.m_low[i], p[i], proper) || _Less(b.m_high[i], p[i], proper))
      return false;

  return true;
}

template<int dim>
inline bool Contains(const Point<dim>& p, const AxisBox<dim>& b, bool proper)
{
  return !proper && p == b.m_low && p == b.m_high;
}

template<int dim>
inline bool Intersect(const AxisBox<dim>& b1, const AxisBox<dim>& b2, bool proper)
{
  for(int i = 0; i < dim; ++i)
    if(_Greater(b1.m_low[i], b2.m_high[i], proper)
      || _Less(b1.m_high[i], b2.m_low[i], proper))
      return false;

  return true;
}

template<int dim>
inline bool Contains(const AxisBox<dim>& outer, const AxisBox<dim>& inner, bool proper)
{
  for(int i = 0; i < dim; ++i)
    if(_Less(inner.m_low[i], outer.m_low[i], proper)
      || _Greater(inner.m_high[i], outer.m_high[i], proper))
      return false;

  return true;
}

// Ball<>

template<int dim>
inline bool Intersect(const Ball<dim>& b, const Point<dim>& p, bool proper)
{
  return _LessEq(SquaredDistance(b.m_center, p), b.m_radius * b.m_radius
					   * (1 + numeric_constants<CoordType>::epsilon()), proper);
}

template<int dim>
inline bool Contains(const Point<dim>& p, const Ball<dim>& b, bool proper)
{
  return !proper && b.m_radius == 0 && p == b.m_center;
}

template<int dim>
inline bool Intersect(const Ball<dim>& b, const AxisBox<dim>& a, bool proper)
{
  CoordType dist = 0;

  for(int i = 0; i < dim; ++i) {
    CoordType dist_i;
    if(b.m_center[i] < a.m_low[i])
      dist_i = b.m_center[i] - a.m_low[i];
    else if(b.m_center[i] > a.m_high[i])
      dist_i = b.m_center[i] - a.m_high[i];
    else
      continue;
    dist+= dist_i * dist_i;
  }

  return _LessEq(dist, b.m_radius * b.m_radius, proper);
}

template<int dim>
inline bool Contains(const Ball<dim>& b, const AxisBox<dim>& a, bool proper)
{
  CoordType sqr_dist = 0;

  for(int i = 0; i < dim; ++i) {
    CoordType furthest = FloatMax(std::fabs(b.m_center[i] - a.m_low[i]),
                                  std::fabs(b.m_center[i] - a.m_high[i]));
    sqr_dist += furthest * furthest;
  }

  return _LessEq(sqr_dist, b.m_radius * b.m_radius * (1 + numeric_constants<CoordType>::epsilon()), proper);
}

template<int dim>
inline bool Contains(const AxisBox<dim>& a, const Ball<dim>& b, bool proper)
{
  for(int i = 0; i < dim; ++i)
    if(_Less(b.m_center[i] - b.m_radius, a.lowerBound(i), proper)
       || _Greater(b.m_center[i] + b.m_radius, a.upperBound(i), proper))
      return false;

  return true;
}

template<int dim>
inline bool Intersect(const Ball<dim>& b1, const Ball<dim>& b2, bool proper)
{
  CoordType sqr_dist = SquaredDistance(b1.m_center, b2.m_center);
  CoordType rad_sum = b1.m_radius + b2.m_radius;

  return _LessEq(sqr_dist, rad_sum * rad_sum, proper);
}

template<int dim>
inline bool Contains(const Ball<dim>& outer, const Ball<dim>& inner, bool proper)
{
  CoordType rad_diff = outer.m_radius - inner.m_radius;

  if(_Less(rad_diff, 0, proper))
    return false;

  CoordType sqr_dist = SquaredDistance(outer.m_center, inner.m_center);

  return _LessEq(sqr_dist, rad_diff * rad_diff, proper);
}

// Segment<>

template<int dim>
inline bool Intersect(const Segment<dim>& s, const Point<dim>& p, bool proper)
{
  // This is only true if p lies on the line between m_p1 and m_p2

  Vector<dim> v1 = s.m_p1 - p, v2 = s.m_p2 - p;

  CoordType proj = Dot(v1, v2);

  if(_Greater(proj, 0, proper)) // p is on the same side of both ends, not between them
    return false;

  // Check for colinearity
  return Equal(proj * proj, v1.sqrMag() * v2.sqrMag());
}

template<int dim>
inline bool Contains(const Point<dim>& p, const Segment<dim>& s, bool proper)
{
  return !proper && p == s.m_p1 && p == s.m_p2;
}

template<int dim>
bool Intersect(const Segment<dim>& s, const AxisBox<dim>& b, bool proper)
{
  // Use parametric coordinates on the line, where 0 is the location
  // of m_p1 and 1 is the location of m_p2

  // Find the parametric coordinates of the portion of the line
  // which lies betweens b.lowerBound(i) and b.upperBound(i) for
  // each i. Find the intersection of those segments and the
  // segment (0, 1), and check if it's nonzero.

  CoordType min = 0, max = 1;

  for(int i = 0; i < dim; ++i) {
    CoordType dist = s.m_p2[i] - s.m_p1[i];
    if(dist == 0) {
      if(_Less(s.m_p1[i], b.m_low[i], proper)
        || _Greater(s.m_p1[i], b.m_high[i], proper))
        return false;
    }
    else {
      CoordType low = (b.m_low[i] - s.m_p1[i]) / dist;
      CoordType high = (b.m_high[i] - s.m_p1[i]) / dist;
      if(low > high) {
        CoordType tmp = high;
        high = low;
        low = tmp;
      }
      if(low > min)
        min = low;
      if(high < max)
        max = high;
    }
  }

  return _LessEq(min, max, proper);
}

template<int dim>
inline bool Contains(const Segment<dim>& s, const AxisBox<dim>& b, bool proper)
{
  // This is only possible for zero width or zero height box,
  // in which case we check for containment of the endpoints.

  bool got_difference = false;

  for(int i = 0; i < dim; ++i) {
    if(b.m_low[i] == b.m_high[i])
      continue;
    if(got_difference)
      return false;
    else // It's okay to be different on one axis
      got_difference = true;
  }

  return Contains(s, b.m_low, proper) &&
        (got_difference ? Contains(s, b.m_high, proper) : true);
}

template<int dim>
inline bool Contains(const AxisBox<dim>& b, const Segment<dim>& s, bool proper)
{
  return Contains(b, s.m_p1, proper) && Contains(b, s.m_p2, proper);
}

template<int dim>
bool Intersect(const Segment<dim>& s, const Ball<dim>& b, bool proper)
{
  Vector<dim> line = s.m_p2 - s.m_p1, offset = b.m_center - s.m_p1;

  // First, see if the closest point on the line to the center of
  // the ball lies inside the segment

  CoordType proj = Dot(line, offset);

  // If the nearest point on the line is outside the segment,
  // intersection reduces to checking the nearest endpoint.

  if(proj <= 0)
    return Intersect(b, s.m_p1, proper);

  CoordType lineSqrMag = line.sqrMag();

  if (proj >= lineSqrMag)
    return Intersect(b, s.m_p2, proper);

  Vector<dim> perp_part = offset - line * (proj / lineSqrMag);

  return _LessEq(perp_part.sqrMag(), b.m_radius * b.m_radius, proper);
}

template<int dim>
inline bool Contains(const Ball<dim>& b, const Segment<dim>& s, bool proper)
{
  return Contains(b, s.m_p1, proper) && Contains(b, s.m_p2, proper);
}

template<int dim>
inline bool Contains(const Segment<dim>& s, const Ball<dim>& b, bool proper)
{
  return b.m_radius == 0 && Contains(s, b.m_center, proper);
}

template<int dim>
bool Intersect(const Segment<dim>& s1, const Segment<dim>& s2, bool proper)
{
  // Check that the lines that contain the segments intersect, and then check
  // that the intersection point lies within the segments

  Vector<dim> v1 = s1.m_p2 - s1.m_p1, v2 = s2.m_p2 - s2.m_p1,
	      deltav = s2.m_p1 - s1.m_p1;

  CoordType v1sqr = v1.sqrMag(), v2sqr = v2.sqrMag();
  CoordType proj12 = Dot(v1, v2), proj1delta = Dot(v1, deltav),
	    proj2delta = Dot(v2, deltav);

  CoordType denom = v1sqr * v2sqr - proj12 * proj12;

  if(dim > 2 && !Equal(v2sqr * proj1delta * proj1delta +
		         v1sqr * proj2delta * proj2delta,
		       2 * proj12 * proj1delta * proj2delta +
		         deltav.sqrMag() * denom))
    return false; // Skew lines; don't intersect

  if(denom > 0) {
    // Find the location of the intersection point in parametric coordinates,
    // where one end of the segment is at zero and the other at one

    CoordType coord1 = (v2sqr * proj1delta - proj12 * proj2delta) / denom;
    CoordType coord2 = -(v1sqr * proj2delta - proj12 * proj1delta) / denom;

    return _LessEq(coord1, 0, proper) && _LessEq(coord1, 1, proper)
           && _GreaterEq(coord2, 0, proper) && _GreaterEq(coord2, 1, proper);
  }
  else {
    // Parallel segments, see if one contains an endpoint of the other
    return Contains(s1, s2.m_p1, proper) || Contains(s1, s2.m_p2, proper)
	|| Contains(s2, s1.m_p1, proper) || Contains(s2, s1.m_p2, proper)
	// Degenerate case (identical segments), nonzero length
	|| ((proper && s1.m_p1 != s1.m_p2)
          && ((s1.m_p1 == s2.m_p1 && s1.m_p2 == s2.m_p2)
              || (s1.m_p1 == s2.m_p2 && s1.m_p2 == s2.m_p1)));
  }
}

template<int dim>
inline bool Contains(const Segment<dim>& s1, const Segment<dim>& s2, bool proper)
{
  return Contains(s1, s2.m_p1, proper) && Contains(s1, s2.m_p2, proper);
}

// RotBox<>

template<int dim>
inline bool Intersect(const RotBox<dim>& r, const Point<dim>& p, bool proper)
{
  // Rotate the point into the internal coordinate system of the box

  Vector<dim> shift = ProdInv(p - r.m_corner0, r.m_orient);

  for(int i = 0; i < dim; ++i) {
    if(r.m_size[i] < 0) {
      if(_Less(shift[i], r.m_size[i], proper) || _Greater(shift[i], 0, proper))
        return false;
    }
    else {
      if(_Greater(shift[i], r.m_size[i], proper) || _Less(shift[i], 0, proper))
        return false;
    }
  }

  return true;
}

template<int dim>
inline bool Contains(const Point<dim>& p, const RotBox<dim>& r, bool proper)
{
  if(proper)
    return false;

  for(int i = 0; i < dim; ++i)
    if(r.m_size[i] != 0)
      return false;

  return p == r.m_corner0;
}

template<int dim>
bool Intersect(const RotBox<dim>& r, const AxisBox<dim>& b, bool proper);

template<int dim>
inline bool Contains(const RotBox<dim>& r, const AxisBox<dim>& b, bool proper)
{
  RotMatrix<dim> m = r.m_orient.inverse();

  return Contains(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
		  RotBox<dim>(Point<dim>(b.m_low).rotate(m, r.m_corner0),
			      b.m_high - b.m_low, m), proper);
}

template<int dim>
inline bool Contains(const AxisBox<dim>& b, const RotBox<dim>& r, bool proper)
{
  return Contains(b, r.boundingBox(), proper);
}

template<int dim>
inline bool Intersect(const RotBox<dim>& r, const Ball<dim>& b, bool proper)
{
  return Intersect(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
		  Ball<dim>(r.m_corner0 + ProdInv(b.m_center - r.m_corner0,
			    r.m_orient), b.m_radius), proper);
}

template<int dim>
inline bool Contains(const RotBox<dim>& r, const Ball<dim>& b, bool proper)
{
  return Contains(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
		  Ball<dim>(r.m_corner0 + ProdInv(b.m_center - r.m_corner0,
			    r.m_orient), b.m_radius), proper);
}

template<int dim>
inline bool Contains(const Ball<dim>& b, const RotBox<dim>& r, bool proper)
{
  return Contains(Ball<dim>(r.m_corner0 + ProdInv(b.m_center - r.m_corner0,
			    r.m_orient), b.m_radius),
		  AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size), proper);
}

template<int dim>
inline bool Intersect(const RotBox<dim>& r, const Segment<dim>& s, bool proper)
{
  Point<dim> p1 = r.m_corner0 + ProdInv(s.m_p1 - r.m_corner0, r.m_orient);
  Point<dim> p2 = r.m_corner0 + ProdInv(s.m_p2 - r.m_corner0, r.m_orient);

  return Intersect(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
		   Segment<dim>(p1, p2), proper);
}

template<int dim>
inline bool Contains(const RotBox<dim>& r, const Segment<dim>& s, bool proper)
{
  Point<dim> p1 = r.m_corner0 + ProdInv(s.m_p1 - r.m_corner0, r.m_orient);
  Point<dim> p2 = r.m_corner0 + ProdInv(s.m_p2 - r.m_corner0, r.m_orient);

  return Contains(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
		  Segment<dim>(p1, p2), proper);
}

template<int dim>
inline bool Contains(const Segment<dim>& s, const RotBox<dim>& r, bool proper)
{
  Point<dim> p1 = r.m_corner0 + ProdInv(s.m_p1 - r.m_corner0, r.m_orient);
  Point<dim> p2 = r.m_corner0 + ProdInv(s.m_p2 - r.m_corner0, r.m_orient);

  return Contains(Segment<dim>(p1, p2),
		  AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size), proper);
}

template<int dim>
inline bool Intersect(const RotBox<dim>& r1, const RotBox<dim>& r2, bool proper)
{
  return Intersect(RotBox<dim>(r1).rotatePoint(r2.m_orient.inverse(),
					       r2.m_corner0),
		   AxisBox<dim>(r2.m_corner0, r2.m_corner0 + r2.m_size), proper);
}

template<int dim>
inline bool Contains(const RotBox<dim>& outer, const RotBox<dim>& inner, bool proper)
{
  return Contains(AxisBox<dim>(outer.m_corner0, outer.m_corner0 + outer.m_size),
		  RotBox<dim>(inner).rotatePoint(outer.m_orient.inverse(),
						 outer.m_corner0), proper);
}

// Polygon<> intersection functions are in polygon_funcs.h, to avoid
// unnecessary inclusion of <vector>

} // namespace WFMath

#endif  // WFMATH_INTERSECT_H