/usr/include/wfmath-1.0/wfmath/intersect.h is in libwfmath-1.0-dev 1.0.2+dfsg1-0.4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | // intersect.h (Shape intersection functions)
//
// The WorldForge Project
// Copyright (C) 2002 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
//
#ifndef WFMATH_INTERSECT_H
#define WFMATH_INTERSECT_H
#include <wfmath/vector.h>
#include <wfmath/point.h>
#include <wfmath/const.h>
#include <wfmath/intersect_decls.h>
#include <wfmath/axisbox.h>
#include <wfmath/ball.h>
#include <wfmath/segment.h>
#include <wfmath/rotbox.h>
#include <cmath>
namespace WFMath {
// Get the reversed order intersect functions (is this safe? FIXME)
// No it's not. In the case of an unknown intersection we end up in
// a stack crash loop.
template<class S1, class S2>
inline bool Intersect(const S1& s1, const S2& s2, bool proper)
{
return Intersect(s2, s1, proper);
}
// Point<>
template<int dim>
inline bool Intersect(const Point<dim>& p1, const Point<dim>& p2, bool proper)
{
return !proper && p1 == p2;
}
template<int dim, class S>
inline bool Contains(const S& s, const Point<dim>& p, bool proper)
{
return Intersect(p, s, proper);
}
template<int dim>
inline bool Contains(const Point<dim>& p1, const Point<dim>& p2, bool proper)
{
return !proper && p1 == p2;
}
// AxisBox<>
template<int dim>
inline bool Intersect(const AxisBox<dim>& b, const Point<dim>& p, bool proper)
{
for(int i = 0; i < dim; ++i)
if(_Greater(b.m_low[i], p[i], proper) || _Less(b.m_high[i], p[i], proper))
return false;
return true;
}
template<int dim>
inline bool Contains(const Point<dim>& p, const AxisBox<dim>& b, bool proper)
{
return !proper && p == b.m_low && p == b.m_high;
}
template<int dim>
inline bool Intersect(const AxisBox<dim>& b1, const AxisBox<dim>& b2, bool proper)
{
for(int i = 0; i < dim; ++i)
if(_Greater(b1.m_low[i], b2.m_high[i], proper)
|| _Less(b1.m_high[i], b2.m_low[i], proper))
return false;
return true;
}
template<int dim>
inline bool Contains(const AxisBox<dim>& outer, const AxisBox<dim>& inner, bool proper)
{
for(int i = 0; i < dim; ++i)
if(_Less(inner.m_low[i], outer.m_low[i], proper)
|| _Greater(inner.m_high[i], outer.m_high[i], proper))
return false;
return true;
}
// Ball<>
template<int dim>
inline bool Intersect(const Ball<dim>& b, const Point<dim>& p, bool proper)
{
return _LessEq(SquaredDistance(b.m_center, p), b.m_radius * b.m_radius
* (1 + numeric_constants<CoordType>::epsilon()), proper);
}
template<int dim>
inline bool Contains(const Point<dim>& p, const Ball<dim>& b, bool proper)
{
return !proper && b.m_radius == 0 && p == b.m_center;
}
template<int dim>
inline bool Intersect(const Ball<dim>& b, const AxisBox<dim>& a, bool proper)
{
CoordType dist = 0;
for(int i = 0; i < dim; ++i) {
CoordType dist_i;
if(b.m_center[i] < a.m_low[i])
dist_i = b.m_center[i] - a.m_low[i];
else if(b.m_center[i] > a.m_high[i])
dist_i = b.m_center[i] - a.m_high[i];
else
continue;
dist+= dist_i * dist_i;
}
return _LessEq(dist, b.m_radius * b.m_radius, proper);
}
template<int dim>
inline bool Contains(const Ball<dim>& b, const AxisBox<dim>& a, bool proper)
{
CoordType sqr_dist = 0;
for(int i = 0; i < dim; ++i) {
CoordType furthest = FloatMax(std::fabs(b.m_center[i] - a.m_low[i]),
std::fabs(b.m_center[i] - a.m_high[i]));
sqr_dist += furthest * furthest;
}
return _LessEq(sqr_dist, b.m_radius * b.m_radius * (1 + numeric_constants<CoordType>::epsilon()), proper);
}
template<int dim>
inline bool Contains(const AxisBox<dim>& a, const Ball<dim>& b, bool proper)
{
for(int i = 0; i < dim; ++i)
if(_Less(b.m_center[i] - b.m_radius, a.lowerBound(i), proper)
|| _Greater(b.m_center[i] + b.m_radius, a.upperBound(i), proper))
return false;
return true;
}
template<int dim>
inline bool Intersect(const Ball<dim>& b1, const Ball<dim>& b2, bool proper)
{
CoordType sqr_dist = SquaredDistance(b1.m_center, b2.m_center);
CoordType rad_sum = b1.m_radius + b2.m_radius;
return _LessEq(sqr_dist, rad_sum * rad_sum, proper);
}
template<int dim>
inline bool Contains(const Ball<dim>& outer, const Ball<dim>& inner, bool proper)
{
CoordType rad_diff = outer.m_radius - inner.m_radius;
if(_Less(rad_diff, 0, proper))
return false;
CoordType sqr_dist = SquaredDistance(outer.m_center, inner.m_center);
return _LessEq(sqr_dist, rad_diff * rad_diff, proper);
}
// Segment<>
template<int dim>
inline bool Intersect(const Segment<dim>& s, const Point<dim>& p, bool proper)
{
// This is only true if p lies on the line between m_p1 and m_p2
Vector<dim> v1 = s.m_p1 - p, v2 = s.m_p2 - p;
CoordType proj = Dot(v1, v2);
if(_Greater(proj, 0, proper)) // p is on the same side of both ends, not between them
return false;
// Check for colinearity
return Equal(proj * proj, v1.sqrMag() * v2.sqrMag());
}
template<int dim>
inline bool Contains(const Point<dim>& p, const Segment<dim>& s, bool proper)
{
return !proper && p == s.m_p1 && p == s.m_p2;
}
template<int dim>
bool Intersect(const Segment<dim>& s, const AxisBox<dim>& b, bool proper)
{
// Use parametric coordinates on the line, where 0 is the location
// of m_p1 and 1 is the location of m_p2
// Find the parametric coordinates of the portion of the line
// which lies betweens b.lowerBound(i) and b.upperBound(i) for
// each i. Find the intersection of those segments and the
// segment (0, 1), and check if it's nonzero.
CoordType min = 0, max = 1;
for(int i = 0; i < dim; ++i) {
CoordType dist = s.m_p2[i] - s.m_p1[i];
if(dist == 0) {
if(_Less(s.m_p1[i], b.m_low[i], proper)
|| _Greater(s.m_p1[i], b.m_high[i], proper))
return false;
}
else {
CoordType low = (b.m_low[i] - s.m_p1[i]) / dist;
CoordType high = (b.m_high[i] - s.m_p1[i]) / dist;
if(low > high) {
CoordType tmp = high;
high = low;
low = tmp;
}
if(low > min)
min = low;
if(high < max)
max = high;
}
}
return _LessEq(min, max, proper);
}
template<int dim>
inline bool Contains(const Segment<dim>& s, const AxisBox<dim>& b, bool proper)
{
// This is only possible for zero width or zero height box,
// in which case we check for containment of the endpoints.
bool got_difference = false;
for(int i = 0; i < dim; ++i) {
if(b.m_low[i] == b.m_high[i])
continue;
if(got_difference)
return false;
else // It's okay to be different on one axis
got_difference = true;
}
return Contains(s, b.m_low, proper) &&
(got_difference ? Contains(s, b.m_high, proper) : true);
}
template<int dim>
inline bool Contains(const AxisBox<dim>& b, const Segment<dim>& s, bool proper)
{
return Contains(b, s.m_p1, proper) && Contains(b, s.m_p2, proper);
}
template<int dim>
bool Intersect(const Segment<dim>& s, const Ball<dim>& b, bool proper)
{
Vector<dim> line = s.m_p2 - s.m_p1, offset = b.m_center - s.m_p1;
// First, see if the closest point on the line to the center of
// the ball lies inside the segment
CoordType proj = Dot(line, offset);
// If the nearest point on the line is outside the segment,
// intersection reduces to checking the nearest endpoint.
if(proj <= 0)
return Intersect(b, s.m_p1, proper);
CoordType lineSqrMag = line.sqrMag();
if (proj >= lineSqrMag)
return Intersect(b, s.m_p2, proper);
Vector<dim> perp_part = offset - line * (proj / lineSqrMag);
return _LessEq(perp_part.sqrMag(), b.m_radius * b.m_radius, proper);
}
template<int dim>
inline bool Contains(const Ball<dim>& b, const Segment<dim>& s, bool proper)
{
return Contains(b, s.m_p1, proper) && Contains(b, s.m_p2, proper);
}
template<int dim>
inline bool Contains(const Segment<dim>& s, const Ball<dim>& b, bool proper)
{
return b.m_radius == 0 && Contains(s, b.m_center, proper);
}
template<int dim>
bool Intersect(const Segment<dim>& s1, const Segment<dim>& s2, bool proper)
{
// Check that the lines that contain the segments intersect, and then check
// that the intersection point lies within the segments
Vector<dim> v1 = s1.m_p2 - s1.m_p1, v2 = s2.m_p2 - s2.m_p1,
deltav = s2.m_p1 - s1.m_p1;
CoordType v1sqr = v1.sqrMag(), v2sqr = v2.sqrMag();
CoordType proj12 = Dot(v1, v2), proj1delta = Dot(v1, deltav),
proj2delta = Dot(v2, deltav);
CoordType denom = v1sqr * v2sqr - proj12 * proj12;
if(dim > 2 && !Equal(v2sqr * proj1delta * proj1delta +
v1sqr * proj2delta * proj2delta,
2 * proj12 * proj1delta * proj2delta +
deltav.sqrMag() * denom))
return false; // Skew lines; don't intersect
if(denom > 0) {
// Find the location of the intersection point in parametric coordinates,
// where one end of the segment is at zero and the other at one
CoordType coord1 = (v2sqr * proj1delta - proj12 * proj2delta) / denom;
CoordType coord2 = -(v1sqr * proj2delta - proj12 * proj1delta) / denom;
return _LessEq(coord1, 0, proper) && _LessEq(coord1, 1, proper)
&& _GreaterEq(coord2, 0, proper) && _GreaterEq(coord2, 1, proper);
}
else {
// Parallel segments, see if one contains an endpoint of the other
return Contains(s1, s2.m_p1, proper) || Contains(s1, s2.m_p2, proper)
|| Contains(s2, s1.m_p1, proper) || Contains(s2, s1.m_p2, proper)
// Degenerate case (identical segments), nonzero length
|| ((proper && s1.m_p1 != s1.m_p2)
&& ((s1.m_p1 == s2.m_p1 && s1.m_p2 == s2.m_p2)
|| (s1.m_p1 == s2.m_p2 && s1.m_p2 == s2.m_p1)));
}
}
template<int dim>
inline bool Contains(const Segment<dim>& s1, const Segment<dim>& s2, bool proper)
{
return Contains(s1, s2.m_p1, proper) && Contains(s1, s2.m_p2, proper);
}
// RotBox<>
template<int dim>
inline bool Intersect(const RotBox<dim>& r, const Point<dim>& p, bool proper)
{
// Rotate the point into the internal coordinate system of the box
Vector<dim> shift = ProdInv(p - r.m_corner0, r.m_orient);
for(int i = 0; i < dim; ++i) {
if(r.m_size[i] < 0) {
if(_Less(shift[i], r.m_size[i], proper) || _Greater(shift[i], 0, proper))
return false;
}
else {
if(_Greater(shift[i], r.m_size[i], proper) || _Less(shift[i], 0, proper))
return false;
}
}
return true;
}
template<int dim>
inline bool Contains(const Point<dim>& p, const RotBox<dim>& r, bool proper)
{
if(proper)
return false;
for(int i = 0; i < dim; ++i)
if(r.m_size[i] != 0)
return false;
return p == r.m_corner0;
}
template<int dim>
bool Intersect(const RotBox<dim>& r, const AxisBox<dim>& b, bool proper);
template<int dim>
inline bool Contains(const RotBox<dim>& r, const AxisBox<dim>& b, bool proper)
{
RotMatrix<dim> m = r.m_orient.inverse();
return Contains(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
RotBox<dim>(Point<dim>(b.m_low).rotate(m, r.m_corner0),
b.m_high - b.m_low, m), proper);
}
template<int dim>
inline bool Contains(const AxisBox<dim>& b, const RotBox<dim>& r, bool proper)
{
return Contains(b, r.boundingBox(), proper);
}
template<int dim>
inline bool Intersect(const RotBox<dim>& r, const Ball<dim>& b, bool proper)
{
return Intersect(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
Ball<dim>(r.m_corner0 + ProdInv(b.m_center - r.m_corner0,
r.m_orient), b.m_radius), proper);
}
template<int dim>
inline bool Contains(const RotBox<dim>& r, const Ball<dim>& b, bool proper)
{
return Contains(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
Ball<dim>(r.m_corner0 + ProdInv(b.m_center - r.m_corner0,
r.m_orient), b.m_radius), proper);
}
template<int dim>
inline bool Contains(const Ball<dim>& b, const RotBox<dim>& r, bool proper)
{
return Contains(Ball<dim>(r.m_corner0 + ProdInv(b.m_center - r.m_corner0,
r.m_orient), b.m_radius),
AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size), proper);
}
template<int dim>
inline bool Intersect(const RotBox<dim>& r, const Segment<dim>& s, bool proper)
{
Point<dim> p1 = r.m_corner0 + ProdInv(s.m_p1 - r.m_corner0, r.m_orient);
Point<dim> p2 = r.m_corner0 + ProdInv(s.m_p2 - r.m_corner0, r.m_orient);
return Intersect(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
Segment<dim>(p1, p2), proper);
}
template<int dim>
inline bool Contains(const RotBox<dim>& r, const Segment<dim>& s, bool proper)
{
Point<dim> p1 = r.m_corner0 + ProdInv(s.m_p1 - r.m_corner0, r.m_orient);
Point<dim> p2 = r.m_corner0 + ProdInv(s.m_p2 - r.m_corner0, r.m_orient);
return Contains(AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size),
Segment<dim>(p1, p2), proper);
}
template<int dim>
inline bool Contains(const Segment<dim>& s, const RotBox<dim>& r, bool proper)
{
Point<dim> p1 = r.m_corner0 + ProdInv(s.m_p1 - r.m_corner0, r.m_orient);
Point<dim> p2 = r.m_corner0 + ProdInv(s.m_p2 - r.m_corner0, r.m_orient);
return Contains(Segment<dim>(p1, p2),
AxisBox<dim>(r.m_corner0, r.m_corner0 + r.m_size), proper);
}
template<int dim>
inline bool Intersect(const RotBox<dim>& r1, const RotBox<dim>& r2, bool proper)
{
return Intersect(RotBox<dim>(r1).rotatePoint(r2.m_orient.inverse(),
r2.m_corner0),
AxisBox<dim>(r2.m_corner0, r2.m_corner0 + r2.m_size), proper);
}
template<int dim>
inline bool Contains(const RotBox<dim>& outer, const RotBox<dim>& inner, bool proper)
{
return Contains(AxisBox<dim>(outer.m_corner0, outer.m_corner0 + outer.m_size),
RotBox<dim>(inner).rotatePoint(outer.m_orient.inverse(),
outer.m_corner0), proper);
}
// Polygon<> intersection functions are in polygon_funcs.h, to avoid
// unnecessary inclusion of <vector>
} // namespace WFMath
#endif // WFMATH_INTERSECT_H
|