This file is indexed.

/usr/include/vtk-6.2/vtkSurfaceLICPainter.h is in libvtk6-dev 6.2.0+dfsg1-10build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkSurfaceLICPainter.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkSurfaceLICPainter - painter that performs LIC on the surface of
//  arbitrary geometry.
//
// .SECTION Description
//  vtkSurfaceLICPainter painter performs LIC on the surface of arbitrary
//  geometry. Point vectors are used as the vector field for generating the LIC.
//  The implementation was originallu  based on "Image Space Based Visualization
//  on Unsteady Flow on Surfaces" by Laramee, Jobard and Hauser appeared in
//  proceedings of IEEE Visualization '03, pages 131-138.
//
//  Internal pipeline:
// <pre>
// noise
//     |
//     [ PROJ (GAT) (COMP) LIC2D (SCAT) SHADE (CCE) DEP]
//     |                                               |
// vectors                                         surface LIC
// </pre>
// PROj  - prject vectors onto surface
// GAT   - gather data for compositing and guard pixel generation  (parallel only)
// COMP  - composite gathered data
// LIC2D - line intengral convolution, see vtkLineIntegralConvolution2D.
// SCAT  - scatter result (parallel only, not all compositors use it)
// SHADE - combine LIC and scalar colors
// CCE   - color contrast enhancement (optional)
// DEP   - depth test and copy to back buffer
//
// The result of each stage is cached in a texture so that during interaction
// a stage may be skipped if the user has not modified its paramters or input
// data.
//
// The parallel parts of algorithm are implemented in vtkPSurfaceLICPainter.
// Note that for MPI enabled builds this class will be automatically created
// by the object factory.
//
// .SECTION See also
// vtkSurfaceLICDefaultPainter vtkLineIntegralConvolution2D
#ifndef vtkSurfaceLICPainter_h
#define vtkSurfaceLICPainter_h

#include "vtkRenderingLICModule.h" // For export macro
#include "vtkPainter.h"

class vtkRenderWindow;
class vtkRenderer;
class vtkActor;
class vtkImageData;
class vtkDataObject;
class vtkDataArray;
class vtkPainterCommunicator;

class VTKRENDERINGLIC_EXPORT vtkSurfaceLICPainter : public vtkPainter
{
public:
  static vtkSurfaceLICPainter* New();
  vtkTypeMacro(vtkSurfaceLICPainter, vtkPainter);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Release any graphics resources that are being consumed by this mapper.
  // The parameter window could be used to determine which graphic
  // resources to release. In this case, releases the display lists.
  virtual void ReleaseGraphicsResources(vtkWindow * win);

  // Description:
  // Get the output data object from this painter.
  // Overridden to pass the input points (or cells) vectors as the tcoords to
  // the deletage painters. This is required by the internal GLSL shader
  // programs used for generating LIC.
  virtual vtkDataObject* GetOutput();

  // Description:
  // Enable/Disable this painter.
  void SetEnable(int val);
  vtkGetMacro(Enable, int);
  void SetEnableOn(){ this->SetEnable(1); }
  void SetEnableOff(){ this->SetEnable(0); }

  // Description:
  // Set the vectors to used for applying LIC. By default point vectors are
  // used. Arguments are same as those passed to
  // vtkAlgorithm::SetInputArrayToProcess except the first 3 arguments i.e. idx,
  // port, connection.
  void SetInputArrayToProcess(int fieldAssociation, const char *name);
  void SetInputArrayToProcess(int fieldAssociation, int fieldAttributeType);

  // Description:
  // Get/Set the number of integration steps in each direction.
  void SetNumberOfSteps(int val);
  vtkGetMacro(NumberOfSteps, int);

  // Description:
  // Get/Set the step size (in pixels).
  void SetStepSize(double val);
  vtkGetMacro(StepSize, double);

  // Description:
  // Normalize vectors during integration. When set(the default) the
  // input vector field is normalized during integration, and each
  // integration occurs over the same arclength. When not set each
  // integration occurs over an arc length proportional to the field
  // magnitude as is customary in traditional numerical methods. See,
  // "Imaging Vector Fields Using Line Integral Convolution" for an
  // axample where normalization is used. See, "Image Space Based
  // Visualization of Unsteady Flow on Surfaces" for an example
  // of where no normalization is used.
  void SetNormalizeVectors(int val);
  vtkBooleanMacro(NormalizeVectors, int);
  vtkGetMacro(NormalizeVectors, int);

  // Description:
  // When set MaskOnSurface computes |V| for use in the fragment masking
  // tests on the surface. When not set the original un-projected
  // un-transformed |V| is used.
  void SetMaskOnSurface(int val);
  vtkBooleanMacro(MaskOnSurface, int);
  vtkGetMacro(MaskOnSurface, int);

  // Description:
  // The MaskThreshold controls the rendering of fragments in stagnant
  // regions of flow.  // In these regions LIC noise texture will be masked,
  // where |V| < MaskThreshold is satisifed. The masking process blends a
  // the MaskColor with the scalar color of the surface proportional to
  // MaskIntesnsity. See MaskIntensity for more information on the blending
  // algorithm. This blending allows one control over the masking process
  // so that masked fragments may be: highlighted (by setting a unique
  // mask color and mask intensity > 0), made invisible with and without
  // passing the un-convolved noise texture (by setting mask intensity 0),
  // made to blend into the LIC.
  //
  // MaskThreshold units are in the original vector space. Note that the
  // threshold can be applied to the original vector field or to the surface
  // projected vector field. See MaskOnSurface.
  void SetMaskThreshold(double val);
  vtkGetMacro(MaskThreshold, double);

  // Description:
  // The MaskColor is used on masked fragments. The default of (0.5, 0.5, 0.5)
  // makes the masked fragments look similar to the LIC'd fragments. The mask
  // color is applied only when MaskIntensity > 0.
  void SetMaskColor(double *val);
  void SetMaskColor(double r, double g, double b)
    { double rgb[3]={r,g,b}; this->SetMaskColor(rgb); }
  vtkGetVector3Macro(MaskColor, double);

  // Description:
  // The MaskIntensity controls the blending of the mask color and the geometry
  // color. The color of masked fragments is given by:
  //
  //     c = maskColor * maskIntensity + geomColor * (1 - maskIntensity)
  //
  // The default value of 0.0 results in the geometry color being used.
  void SetMaskIntensity(double val);
  vtkGetMacro(MaskIntensity, double);

  // Description:
  // EnhancedLIC mean compute the LIC twice with the second pass using
  // the edge-enhanced result of the first pass as a noise texture. Edge
  // enhancedment is made by a simple Laplace convolution.
  void SetEnhancedLIC(int val);
  vtkGetMacro(EnhancedLIC, int);
  vtkBooleanMacro(EnhancedLIC, int);

  // Description:
  // Enable/Disable contrast and dynamic range correction stages. Contrast
  // enhancement can be enabled during LIC computations (See
  // vtkLineINtegralComvolution2D) and after the scalar colors have been
  // combined with the LIC.
  //
  // The best appraoch for using this feature is to enable LIC enhancement,
  // and only if the image is to dark or dull enable COLOR enhancement.
  //
  // Both stages are implemented by a histogram stretching algorithm. During
  // LIC stages the contrast enhancement is applied to gray scale LIC image.
  // During the scalar coloring stage the contrast enhancement is applied to
  // the lightness channel of the color image in HSL color space. The
  // histogram stretching is implemented as follows:
  //
  //     L = (L-m)/(M-m)
  //
  // where, L is the fragment intensity/lightness, m is the intensity/lightness
  // to map to 0, M is the intensity/lightness to map to 1. The default values
  // of m and M are the min and max taken over all fragments.
  //
  // This increase the dynamic range and contrast in the LIC'd image, both of
  // which are natuarly attenuated by the convolution proccess.
  //
  // Values
  //
  //   ENHANCE_CONTRAST_OFF   -- don't enhance LIC or scalar colors
  //   ENHANCE_CONTRAST_LIC   -- enhance in LIC high-pass input and output
  //   ENHANCE_CONTRAST_COLOR -- enhance after scalars are combined with LIC
  //   ENHANCE_CONTRAST_BOTH  -- enhance in LIC stages and after scalar colors
  //
  // This feature is disabled by default.
  enum {
    ENHANCE_CONTRAST_OFF=0,
    ENHANCE_CONTRAST_LIC=1,
    ENHANCE_CONTRAST_COLOR=3,
    ENHANCE_CONTRAST_BOTH=4
    };
  void SetEnhanceContrast(int val);
  vtkGetMacro(EnhanceContrast, int);

  // Description:
  // This feature is used to fine tune the contrast enhancement. There are two
  // modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating
  // the fraction of the range to adjust M and m by, during contrast enahncement
  // histogram stretching. M and m are the intensity/lightness values that map
  // to 1 and 0. (see EnhanceContrast for an explanation of the mapping
  // procedure). m and M are computed using the factors as follows:
  //
  //     m = min(C) + mFactor * (max(C) - min(C))
  //     M = max(C) - MFactor * (max(C) - min(C))
  //
  // the default values for mFactor and MFactor are 0 which result in
  // m = min(C), M = max(C), taken over the entire image. Modifying mFactor and
  // MFactor above or below zero provide control over the saturation/
  // de-saturation during contrast enhancement.
  vtkGetMacro(LowLICContrastEnhancementFactor, double);
  vtkGetMacro(HighLICContrastEnhancementFactor, double);
  void SetLowLICContrastEnhancementFactor(double val);
  void SetHighLICContrastEnhancementFactor(double val);
  //
  vtkGetMacro(LowColorContrastEnhancementFactor, double);
  vtkGetMacro(HighColorContrastEnhancementFactor, double);
  void SetLowColorContrastEnhancementFactor(double val);
  void SetHighColorContrastEnhancementFactor(double val);

  // Description:
  // Enable/Disable the anti-aliasing pass. This optional pass (disabled by
  // default) can be enabled to reduce jagged patterns in the final LIC image.
  // Values greater than 0 control the number of iterations, 1 is typically
  // sufficient.
  void SetAntiAlias(int val);
  vtkBooleanMacro(AntiAlias, int);
  vtkGetMacro(AntiAlias, int);

  // Description:
  // Set/Get the color mode. The color mode controls how scalar colors are
  // combined with the LIC in the final image. The BLEND mode combines scalar
  // colors with LIC intensities with proportional blending controled by the
  // LICIntensity parameter. The MAP mode combines scalar colors with LIC,
  // by multiplication the HSL represntation of color's lightness.
  //
  // The default is COLOR_MODE_BLEND.
  enum {
    COLOR_MODE_BLEND=0,
    COLOR_MODE_MAP
  };
  void SetColorMode(int val);
  vtkGetMacro(ColorMode, int);

  // Description:
  // Factor used when blend mode is set to COLOR_MODE_BLEND. This controls the
  // contribution of the LIC in the final output image as follows:
  //
  //   c = LIC * LICIntensity + scalar * (1 - LICIntensity);
  //
  // 0.0 produces same result as disabling LIC altogether, while 1.0 implies
  // show LIC result alone.
  void SetLICIntensity(double val);
  vtkGetMacro(LICIntensity, double);

  // Description:
  // Factor used when blend mode is set to COLOR_MODE_MAP. This adds a bias to
  // the LIC image. The purpose of this is to adjust the brightness when a
  // brighter image is desired. The default of 0.0 results in no change. Values
  // gretaer than 0.0 will brighten the image while values less than 0.0 darken
  // the image.
  void SetMapModeBias(double val);
  vtkGetMacro(MapModeBias, double);

  // Description:
  // Set the data containing a noise array as active scalars. Active scalars
  // array will be converted into a texture for use as noise in the LIC process.
  // Noise datasets are expected to be gray scale.
  void SetNoiseDataSet(vtkImageData *data);
  vtkImageData *GetNoiseDataSet();

  // Description:
  // Set/Get the noise texture source. When not set the default 200x200 white
  // noise texture is used (see VTKData/Data/Data/noise.png). When set a noise
  // texture is generated based on the following parameters:
  //
  //    NoiseType               - select noise type. Gaussian, Uniform, etc
  //    NoiseTextureSize        - number of pixels in square noise texture(side)
  //    NoiseGrainSize          - number of pixels each noise value spans(side)
  //    MinNoiseValue           - minimum noise color >=0 && < MaxNoiseValue
  //    MaxNoiseValue           - maximum noise color <=1 ** > MinNoiseValue
  //    NumberOfNoiseLevels     - number of discrete noise colors
  //    ImpulseNoiseProbability - impulse noise is generated when < 1
  //    ImpulseNoiseBackgroundValue  - the background color for untouched pixels
  //    NoiseGeneratorSeed      - seed the random number generators
  //
  // Changing the noise texture gives one greater control over the look of the
  // final image. The default is 0 which results in the use of a static 200x200
  // Gaussian noise texture. See VTKData/Data/Data/noise.png.
  void SetGenerateNoiseTexture(int shouldGenerate);
  vtkGetMacro(GenerateNoiseTexture, int);

  // Description:
  // Select the statistical distribution of randomly generated noise values.
  // With uniform noise there is greater control over the range of values
  // in the noise texture. The Default is NOISE_TYPE_GAUSSIAN.
  enum {
    NOISE_TYPE_UNIFORM=0,
    NOISE_TYPE_GAUSSIAN=1,
    NOISE_TYPE_PERLIN=2
    };
  void SetNoiseType(int type);
  vtkGetMacro(NoiseType, int);

  // Description:
  // Set/Get the side length in pixels of the noise texture. The texture will
  // be length^2 pixels in area.
  void SetNoiseTextureSize(int length);
  vtkGetMacro(NoiseTextureSize, int);

  // Description:
  // Set/Get the side length in pixels of the noise values in the noise texture.
  // Each noise value will be length^2 pixels in area.
  void SetNoiseGrainSize(int val);
  vtkGetMacro(NoiseGrainSize, int);

  // Description:
  // Set/Get the minimum and mximum  gray scale values that the generated noise
  // can take on. The generated noise will be in the range of MinNoiseValue to
  // MaxNoiseValue. Values are clamped within 0 to 1. MinNoiseValue must be
  // less than MaxNoiseValue.
  void SetMinNoiseValue(double val);
  void SetMaxNoiseValue(double val);
  vtkGetMacro(MinNoiseValue, double);
  vtkGetMacro(MaxNoiseValue, double);

  // Description:
  // Set/Get the number of discrete values a noise pixel may take on. Default
  // 1024.
  void SetNumberOfNoiseLevels(int val);
  vtkGetMacro(NumberOfNoiseLevels, int);

  // Description:
  // Control the density of of the noise. A value of 1.0 produces uniform random
  // noise while values < 1.0 produce impulse noise with the given probabilty.
  void SetImpulseNoiseProbability(double val);
  vtkGetMacro(ImpulseNoiseProbability, double);

  // Description:
  // The color to use for untouched pixels when impulse noise probability < 1.
  void SetImpulseNoiseBackgroundValue(double val);
  vtkGetMacro(ImpulseNoiseBackgroundValue, double);

  // Description:
  // Set/Get the seed value used by the random number generator.
  void SetNoiseGeneratorSeed(int val);
  vtkGetMacro(NoiseGeneratorSeed, int);

  // Description:
  // Control the screen space decomposition where LIC is computed.
  enum {
    COMPOSITE_INPLACE=0,
    COMPOSITE_INPLACE_DISJOINT=1,
    COMPOSITE_BALANCED=2,
    COMPOSITE_AUTO=3
    };
  void SetCompositeStrategy(int val);
  vtkGetMacro(CompositeStrategy, int);

  // Description:
  // Returns true if the rendering context supports extensions needed by this
  // painter.
  static bool IsSupported(vtkRenderWindow *context);

  // Description:
  // Methods used for parallel benchmarks. Use cmake to define
  // vtkSurfaceLICPainterTIME to enable benchmarks. During each
  // update timing information is stored, it can be written to
  // disk by calling WriteLog.
  virtual void WriteTimerLog(const char *){}

protected:
  vtkSurfaceLICPainter();
  ~vtkSurfaceLICPainter();

  // Description:
  // Called before RenderInternal() if the Information has been changed
  // since the last time this method was called. We use this to detect
  // when LUT has changed.
  virtual void ProcessInformation(vtkInformation* info);

  // Description:
  // Get the min/max across all ranks. min/max are in/out.
  // In serial operation this is a no-op, in parallel it
  // is a global collective reduction.
  virtual void GetGlobalMinMax(vtkPainterCommunicator*, float&, float&){}

  // Description:
  // Methods used for parallel benchmarks. Use cmake to define
  // vtkSurfaceLICPainterTIME to enable benchmarks. During each
  // update timing information is stored, it can be written to
  // disk by calling WriteLog.
  virtual void StartTimerEvent(const char *){}
  virtual void EndTimerEvent(const char *){}

  // Description:
  // Creates a new communicator with/without the calling processes
  // as indicated by the passed in flag, if not 0 the calling process
  // is included in the new communicator. In parallel this call is mpi
  // collective on the world communicator. In serial this is a no-op.
  virtual vtkPainterCommunicator *CreateCommunicator(int);

  // Description:
  // Creates a new communicator for internal use based on this
  // rank's visible data.
  void CreateCommunicator();

  // Description:
  // Computes data bounds.
  void GetBounds(vtkDataObject* data, double bounds[6]);

  // Description:
  // Take part in garbage collection.
  virtual void ReportReferences(vtkGarbageCollector *collector);

  // Description:
  // Updates the noise texture, downsampling by the requested sample rate.
  void UpdateNoiseImage(vtkRenderWindow *renWin);

  // Description:
  // Performs the actual rendering. Subclasses may override this method.
  // default implementation merely call a Render on the DelegatePainter,
  // if any. When RenderInternal() is called, it is assured that the
  // DelegatePainter is in sync with this painter i.e. UpdateDelegatePainter()
  // has been called.
  virtual void RenderInternal(
        vtkRenderer* renderer,
        vtkActor* actor,
        unsigned long typeflags,
        bool forceCompileOnly);


  // Description:
  // Look for changes that would trigger stage updates
  void ValidateContext(vtkRenderer *renderer);

  // Description:
  // Return false if stage can be skipped
  bool NeedToUpdateOutputData();
  virtual bool NeedToUpdateCommunicator();
  bool NeedToRenderGeometry(vtkRenderer *renderer, vtkActor *actor);
  bool NeedToGatherVectors();
  bool NeedToComputeLIC();
  bool NeedToColorLIC();
  void SetUpdateAll();

  // Description:
  // resoucre allocators
  bool PrepareOutput();
  void InitializeResources();

  // Description:
  // set tcoords with vectors
  bool VectorsToTCoords(vtkDataObject *dataObj);
  bool VectorsToTCoords(vtkDataSet *dataObj);
  void ClearTCoords(vtkDataSet *data);

  // Description:
  // Returns true when rendering LIC is possible.
  bool CanRenderSurfaceLIC(vtkActor *actor, int typeflags);

protected:
  // Unit is a pixel length.
  int     NumberOfSteps;
  double  StepSize;
  int     NormalizeVectors;

  int     EnhancedLIC;
  int     EnhanceContrast;
  double  LowLICContrastEnhancementFactor;
  double  HighLICContrastEnhancementFactor;
  double  LowColorContrastEnhancementFactor;
  double  HighColorContrastEnhancementFactor;
  int     AntiAlias;

  int     MaskOnSurface;
  double  MaskThreshold;
  double  MaskIntensity;
  double  MaskColor[3];

  int     ColorMode;
  double  LICIntensity;
  double  MapModeBias;

  int     GenerateNoiseTexture;
  int     NoiseType;
  int     NoiseTextureSize;
  int     NoiseGrainSize;
  double  MinNoiseValue;
  double  MaxNoiseValue;
  int     NumberOfNoiseLevels;
  double  ImpulseNoiseProbability;
  double  ImpulseNoiseBackgroundValue;
  int     NoiseGeneratorSeed;

  int     AlwaysUpdate;
  int     Enable;
  int     CompositeStrategy;

  vtkDataObject* Output;
  class vtkInternals;
  vtkInternals* Internals;

private:
  vtkSurfaceLICPainter(const vtkSurfaceLICPainter&); // Not implemented.
  void operator=(const vtkSurfaceLICPainter&); // Not implemented.
};

#endif