This file is indexed.

/usr/include/vtk-6.2/vtkQuadraticPyramid.h is in libvtk6-dev 6.2.0+dfsg1-10build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkQuadraticPyramid.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkQuadraticPyramid - cell represents a parabolic, 13-node isoparametric pyramid
// .SECTION Description
// vtkQuadraticPyramid is a concrete implementation of vtkNonLinearCell to
// represent a three-dimensional, 13-node isoparametric parabolic
// pyramid. The interpolation is the standard finite element, quadratic
// isoparametric shape function. The cell includes a mid-edge node. The
// ordering of the thirteen points defining the cell is point ids (0-4,5-12)
// where point ids 0-4 are the five corner vertices of the pyramid; followed
// by eight midedge nodes (5-12). Note that these midedge nodes correspond lie
// on the edges defined by (0,1), (1,2), (2,3), (3,0), (0,4), (1,4), (2,4),
// (3,4).

// .SECTION See Also
// vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
// vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticWedge

// .SECTION Thanks
// The shape functions and derivatives could be implemented thanks to
// the report Pyramid Solid Elements Linear and Quadratic Iso-P Models
// From Center For Aerospace Structures

#ifndef vtkQuadraticPyramid_h
#define vtkQuadraticPyramid_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"

class vtkQuadraticEdge;
class vtkQuadraticQuad;
class vtkQuadraticTriangle;
class vtkTetra;
class vtkPyramid;
class vtkDoubleArray;

class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticPyramid : public vtkNonLinearCell
{
public:
  static vtkQuadraticPyramid *New();
  vtkTypeMacro(vtkQuadraticPyramid,vtkNonLinearCell);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Implement the vtkCell API. See the vtkCell API for descriptions
  // of these methods.
  int GetCellType() {return VTK_QUADRATIC_PYRAMID;};
  int GetCellDimension() {return 3;}
  int GetNumberOfEdges() {return 8;}
  int GetNumberOfFaces() {return 5;}
  vtkCell *GetEdge(int edgeId);
  vtkCell *GetFace(int faceId);

  int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
  void Contour(double value, vtkDataArray *cellScalars,
               vtkIncrementalPointLocator *locator, vtkCellArray *verts,
               vtkCellArray *lines, vtkCellArray *polys,
               vtkPointData *inPd, vtkPointData *outPd,
               vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
  int EvaluatePosition(double x[3], double* closestPoint,
                       int& subId, double pcoords[3],
                       double& dist2, double *weights);
  void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                        double *weights);
  int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
  void Derivatives(int subId, double pcoords[3], double *values,
                   int dim, double *derivs);
  virtual double *GetParametricCoords();

  // Description:
  // Clip this quadratic triangle using scalar value provided. Like
  // contouring, except that it cuts the triangle to produce linear
  // triangles.
  void Clip(double value, vtkDataArray *cellScalars,
            vtkIncrementalPointLocator *locator, vtkCellArray *tets,
            vtkPointData *inPd, vtkPointData *outPd,
            vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
            int insideOut);

  // Description:
  // Line-edge intersection. Intersection has to occur within [0,1] parametric
  // coordinates and with specified tolerance.
  int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                        double x[3], double pcoords[3], int& subId);


  // Description:
  // Return the center of the quadratic pyramid in parametric coordinates.
  int GetParametricCenter(double pcoords[3]);

  // Description:
  // @deprecated Replaced by vtkQuadraticPyramid::InterpolateFunctions as of VTK 5.2
  static void InterpolationFunctions(double pcoords[3], double weights[13]);
  // Description:
  // @deprecated Replaced by vtkQuadraticPyramid::InterpolateDerivs as of VTK 5.2
  static void InterpolationDerivs(double pcoords[3], double derivs[39]);
  // Description:
  // Compute the interpolation functions/derivatives
  // (aka shape functions/derivatives)
  virtual void InterpolateFunctions(double pcoords[3], double weights[13])
    {
    vtkQuadraticPyramid::InterpolationFunctions(pcoords,weights);
    }
  virtual void InterpolateDerivs(double pcoords[3], double derivs[39])
    {
    vtkQuadraticPyramid::InterpolationDerivs(pcoords,derivs);
    }
  // Description:
  // Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
  // Ids are related to the cell, not to the dataset.
  static int *GetEdgeArray(int edgeId);
  static int *GetFaceArray(int faceId);

  // Description:
  // Given parametric coordinates compute inverse Jacobian transformation
  // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
  // function derivatives.
  void JacobianInverse(double pcoords[3], double **inverse, double derivs[39]);

protected:
  vtkQuadraticPyramid();
  ~vtkQuadraticPyramid();

  vtkQuadraticEdge *Edge;
  vtkQuadraticTriangle *TriangleFace;
  vtkQuadraticQuad *Face;
  vtkTetra         *Tetra;
  vtkPyramid       *Pyramid;
  vtkPointData     *PointData;
  vtkCellData      *CellData;
  vtkDoubleArray   *CellScalars;
  vtkDoubleArray   *Scalars; //used to avoid New/Delete in contouring/clipping

  void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId,
    vtkDataArray *cellScalars);

private:
  vtkQuadraticPyramid(const vtkQuadraticPyramid&);  // Not implemented.
  void operator=(const vtkQuadraticPyramid&);  // Not implemented.
};
//----------------------------------------------------------------------------
// Return the center of the quadratic pyramid in parametric coordinates.
//
inline int vtkQuadraticPyramid::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = 6./13;
  pcoords[2] = 3./13;
  return 0;
}


#endif