This file is indexed.

/usr/include/vtk-6.2/vtkPCAStatistics.h is in libvtk6-dev 6.2.0+dfsg1-10build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkPCAStatistics.h

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/*-------------------------------------------------------------------------
  Copyright 2010 Sandia Corporation.
  Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
  the U.S. Government retains certain rights in this software.
  -------------------------------------------------------------------------*/
// .NAME vtkPCAStatistics - A class for multivariate principal component analysis
//
// .SECTION Description
// This class derives from the multi-correlative statistics algorithm and
// uses the covariance matrix and Cholesky decomposition computed by it.
// However, when it finalizes the statistics in learn operation, the PCA class
// computes the SVD of the covariance matrix in order to obtain its eigenvectors.
//
// In the assess operation, the input data are
// - projected into the basis defined by the eigenvectors,
// - the energy associated with each datum is computed,
// - or some combination thereof.
// Additionally, the user may specify some threshold energy or
// eigenvector entry below which the basis is truncated. This allows
// projection into a lower-dimensional state while minimizing (in a
// least squares sense) the projection error.
//
// In the test operation, a Jarque-Bera-Srivastava test of n-d normality is performed.
//
// The Robust PCA can be computed by using the median instead of the mean,
// and the MAD matrix (Median Absolute Deviation) instead of the covariance matrix.
// This can be done by activating the MedianAbsoluteDeviation boolean (declared in
// the superclass).
//
// .SECTION Thanks
// Thanks to David Thompson, Philippe Pebay and Jackson Mayo from
// Sandia National Laboratories for implementing this class.
// Updated by Philippe Pebay, Kitware SAS 2012
// Updated by Tristan Coulange and Joachim Pouderoux, Kitware SAS 2013

#ifndef vtkPCAStatistics_h
#define vtkPCAStatistics_h

#include "vtkFiltersStatisticsModule.h" // For export macro
#include "vtkMultiCorrelativeStatistics.h"

class vtkDoubleArray;
class vtkIdTypeArray;

class VTKFILTERSSTATISTICS_EXPORT vtkPCAStatistics : public vtkMultiCorrelativeStatistics
{
public:
  vtkTypeMacro(vtkPCAStatistics,vtkMultiCorrelativeStatistics);
  virtual void PrintSelf( ostream& os, vtkIndent indent );
  static vtkPCAStatistics* New();

  //BTX
  // Description:
  // Methods by which the covariance matrix may be normalized.
  enum NormalizationType
    {
    NONE,               //!< The covariance matrix should be used as computed.
    TRIANGLE_SPECIFIED, //!< Normalize cov(i,j) by V(i,j) where V is supplied by the user.
    DIAGONAL_SPECIFIED, //!< Normalize cov(i,j) by sqrt(V(i)*V(j)) where V is supplied by the user.
    DIAGONAL_VARIANCE,  //!< Normalize cov(i,j) by sqrt(cov(i,i)*cov(j,j)).
    NUM_NORMALIZATION_SCHEMES //!< The number of normalization schemes.
    };

  // Description:
  // These are the enumeration values that SetBasisScheme() accepts and GetBasisScheme returns.
  enum ProjectionType
    {
    FULL_BASIS,         //!< Use all entries in the basis matrix
    FIXED_BASIS_SIZE,   //!< Use the first N entries in the basis matrix
    FIXED_BASIS_ENERGY, //!< Use consecutive basis matrix entries whose energies sum to at least T
    NUM_BASIS_SCHEMES   //!< The number of schemes (not a valid scheme).
    };
  //ETX

  // Description:
  // This determines how (or if) the covariance matrix \a cov is normalized before PCA.
  //
  // When set to NONE, no normalization is performed. This is the default.
  //
  // When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided by V(i,j).
  // The list V of normalization factors must be set using the SetNormalization method
  // before the filter is executed.
  //
  // When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided by sqrt(V(i)*V(j)).
  // The list V of normalization factors must be set using the SetNormalization method
  // before the filter is executed.
  //
  // When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided by sqrt(cov(i,i)*cov(j,j)).
  // <b>Warning</b>: Although this is accepted practice in some fields,
  // some people think you should not turn this option on unless there
  // is a good physically-based reason for doing so. Much better instead
  // to determine how component magnitudes should be compared using
  // physical reasoning and use DIAGONAL_SPECIFIED, TRIANGLE_SPECIFIED, or
  // perform some pre-processing to shift and scale input data columns
  // appropriately than to expect magical results from a shady normalization hack.
  vtkSetMacro(NormalizationScheme,int);
  vtkGetMacro(NormalizationScheme,int);
  virtual void SetNormalizationSchemeByName( const char* sname );
  virtual const char* GetNormalizationSchemeName( int scheme );

  // Description:
  // These methods allow you to set/get values used to normalize the covariance matrix before PCA.
  // The normalization values apply to all requests, so you do not specify a single
  // vector but a 3-column table.
  //
  // The first two columns contain the names of columns from input 0 and the third column contains
  // the value to normalize the corresponding entry in the covariance matrix.
  // The table must always have 3 columns even when the NormalizationScheme is DIAGONAL_SPECIFIED.
  // When only diagonal entries are to be used, only table rows where the first two columns are
  // identical to one another will be employed.
  // If there are multiple rows specifying different values for the same pair of columns,
  // the entry nearest the bottom of the table takes precedence.
  //
  // These functions are actually convenience methods that set/get the third input of the filter.
  // Because the table is the third input, you may use other filters to produce a table of
  // normalizations and have the pipeline take care of updates.
  //
  // Any missing entries will be set to 1.0 and a warning issued.
  // An error will occur if the third input to the filter is not set and the
  // NormalizationScheme is DIAGONAL_SPECIFIED or TRIANGLE_SPECIFIED.
  //
  // NOTE: SetSpecifiedNormalization( table ) is equivalent to SetInputData(3, table)
  // and therefore does not make a pipeline connection.
  virtual vtkTable* GetSpecifiedNormalization();
  virtual void SetSpecifiedNormalization( vtkTable* );

  // Description:
  // Get the eigenvalues. The eigenvalues are ordered according from largest to smallest.
  // This function:
  // void GetEigenvalues(int request, int i, vtkDoubleArray*);
  // does all of the work. The other functions simply call this function with the appropriate
  // parameters. These functions are not valid unless Update() has been called and the Derive
  // option is turned on.
  void GetEigenvalues(int request, vtkDoubleArray*);
  void GetEigenvalues(vtkDoubleArray*);
  double GetEigenvalue(int request, int i);
  double GetEigenvalue(int i);

  // Description:
  // Get the eigenvectors. The eigenvectors are ordered according to the magnitude of their
  // associated eigenvalues, sorted from largest to smallest. That is, eigenvector 0 corresponds
  // to the largest eigenvalue.
  // This function:
  // void GetEigenvectors(int request, vtkDoubleArray* eigenvectors)
  // does all of the work. The other functions are convenience functions that call this function
  // with default arguments. These functions are not valid unless Update() has been called and the Derive
  // option is turned on.
  void GetEigenvectors(int request, vtkDoubleArray* eigenvectors);
  void GetEigenvectors(vtkDoubleArray* eigenvectors);
  void GetEigenvector(int i, vtkDoubleArray* eigenvector);
  void GetEigenvector(int request, int i, vtkDoubleArray* eigenvector);

  // Description:
  // This variable controls the dimensionality of output tuples in Assess operation.
  // Consider the case where you have requested a PCA on D columns.
  //
  // When set to vtkPCAStatistics::FULL_BASIS, the entire set of basis vectors
  // is used to derive new coordinates for each tuple being assessed.
  // In this mode, you are guaranteed to have output tuples of the same dimension
  // as the input tuples. (That dimension is D, so there will be D additional
  // columns added to the table for the request.)
  //
  // When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first N basis vectors
  // are used to derive new coordinates for each tuple being assessed.
  // In this mode, you are guaranteed to have output tuples of dimension min(N,D).
  // You must set N prior to assessing data using the SetFixedBasisSize() method.
  // When N < D, this turns the PCA into a projection (instead of change of basis).
  //
  // When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of basis vectors
  // used to derive new coordinates for each tuple will be the minimum number
  // of columns N that satisfy
  // \f[
  //   \frac{\sum_{i=1}^{N} \lambda_i}{\sum_{i=1}^{D} \lambda_i} < T
  // \f]
  // You must set T prior to assessing data using the SetFixedBasisEnergy() method.
  // When T < 1, this turns the PCA into a projection (instead of change of basis).
  //
  // By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.
  vtkSetMacro(BasisScheme,int);
  vtkGetMacro(BasisScheme,int);
  virtual const char* GetBasisSchemeName( int schemeIndex );
  virtual void SetBasisSchemeByName( const char* schemeName );

  // Description:
  // The number of basis vectors to use. See SetBasisScheme() for more information.
  // When FixedBasisSize <= 0 (the default), the fixed basis size scheme is equivalent to the full basis scheme.
  vtkSetMacro(FixedBasisSize,int);
  vtkGetMacro(FixedBasisSize,int);

  // Description:
  // The minimum energy the new basis should use, as a fraction. See SetBasisScheme() for more information.
  // When FixedBasisEnergy >= 1 (the default), the fixed basis energy scheme is equivalent to the full basis scheme.
  vtkSetClampMacro(FixedBasisEnergy,double,0.,1.);
  vtkGetMacro(FixedBasisEnergy,double);

  // Description:
  // A convenience method (in particular for access from other applications) to
  // set parameter values.
  // Return true if setting of requested parameter name was excuted, false otherwise.
  virtual bool SetParameter( const char* parameter,
                             int index,
                             vtkVariant value );

protected:
  vtkPCAStatistics();
  ~vtkPCAStatistics();

  // Description:
  // This algorithm accepts a vtkTable containing normalization values for
  // its fourth input (port 3).
  // We override FillInputPortInformation to indicate this.
  virtual int FillInputPortInformation( int port, vtkInformation* info );

  // Description:
  // Execute the calculations required by the Derive option.
  virtual void Derive( vtkMultiBlockDataSet* );

  // Description:
  // Execute the calculations required by the Test option.
  virtual void Test( vtkTable*,
                     vtkMultiBlockDataSet*,
                     vtkTable* );

  // Description:
  // Execute the calculations required by the Assess option.
  virtual void Assess( vtkTable*,
                       vtkMultiBlockDataSet*,
                       vtkTable* );
  //BTX
  // Description:
  // Calculate p-value. This will be overridden using the object factory with an
  // R implementation if R is present.
  virtual vtkDoubleArray* CalculatePValues(vtkIdTypeArray*, vtkDoubleArray*);

  //BTX
  // Description:
  // Provide the appropriate assessment functor.
  virtual void SelectAssessFunctor( vtkTable* inData,
                                    vtkDataObject* inMeta,
                                    vtkStringArray* rowNames,
                                    AssessFunctor*& dfunc );
  //ETX

  int NormalizationScheme;
  int BasisScheme;
  int FixedBasisSize;
  double FixedBasisEnergy;

  //BTX
  static const char* BasisSchemeEnumNames[NUM_BASIS_SCHEMES + 1];
  static const char* NormalizationSchemeEnumNames[NUM_NORMALIZATION_SCHEMES + 1];
  //ETX

private:
  vtkPCAStatistics( const vtkPCAStatistics& ); // Not implemented
  void operator = ( const vtkPCAStatistics& );  // Not implemented
};

#endif // vtkPCAStatistics_h