/usr/include/vtk-6.2/vtkPCAStatistics.h is in libvtk6-dev 6.2.0+dfsg1-10build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkPCAStatistics.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2010 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
// .NAME vtkPCAStatistics - A class for multivariate principal component analysis
//
// .SECTION Description
// This class derives from the multi-correlative statistics algorithm and
// uses the covariance matrix and Cholesky decomposition computed by it.
// However, when it finalizes the statistics in learn operation, the PCA class
// computes the SVD of the covariance matrix in order to obtain its eigenvectors.
//
// In the assess operation, the input data are
// - projected into the basis defined by the eigenvectors,
// - the energy associated with each datum is computed,
// - or some combination thereof.
// Additionally, the user may specify some threshold energy or
// eigenvector entry below which the basis is truncated. This allows
// projection into a lower-dimensional state while minimizing (in a
// least squares sense) the projection error.
//
// In the test operation, a Jarque-Bera-Srivastava test of n-d normality is performed.
//
// The Robust PCA can be computed by using the median instead of the mean,
// and the MAD matrix (Median Absolute Deviation) instead of the covariance matrix.
// This can be done by activating the MedianAbsoluteDeviation boolean (declared in
// the superclass).
//
// .SECTION Thanks
// Thanks to David Thompson, Philippe Pebay and Jackson Mayo from
// Sandia National Laboratories for implementing this class.
// Updated by Philippe Pebay, Kitware SAS 2012
// Updated by Tristan Coulange and Joachim Pouderoux, Kitware SAS 2013
#ifndef vtkPCAStatistics_h
#define vtkPCAStatistics_h
#include "vtkFiltersStatisticsModule.h" // For export macro
#include "vtkMultiCorrelativeStatistics.h"
class vtkDoubleArray;
class vtkIdTypeArray;
class VTKFILTERSSTATISTICS_EXPORT vtkPCAStatistics : public vtkMultiCorrelativeStatistics
{
public:
vtkTypeMacro(vtkPCAStatistics,vtkMultiCorrelativeStatistics);
virtual void PrintSelf( ostream& os, vtkIndent indent );
static vtkPCAStatistics* New();
//BTX
// Description:
// Methods by which the covariance matrix may be normalized.
enum NormalizationType
{
NONE, //!< The covariance matrix should be used as computed.
TRIANGLE_SPECIFIED, //!< Normalize cov(i,j) by V(i,j) where V is supplied by the user.
DIAGONAL_SPECIFIED, //!< Normalize cov(i,j) by sqrt(V(i)*V(j)) where V is supplied by the user.
DIAGONAL_VARIANCE, //!< Normalize cov(i,j) by sqrt(cov(i,i)*cov(j,j)).
NUM_NORMALIZATION_SCHEMES //!< The number of normalization schemes.
};
// Description:
// These are the enumeration values that SetBasisScheme() accepts and GetBasisScheme returns.
enum ProjectionType
{
FULL_BASIS, //!< Use all entries in the basis matrix
FIXED_BASIS_SIZE, //!< Use the first N entries in the basis matrix
FIXED_BASIS_ENERGY, //!< Use consecutive basis matrix entries whose energies sum to at least T
NUM_BASIS_SCHEMES //!< The number of schemes (not a valid scheme).
};
//ETX
// Description:
// This determines how (or if) the covariance matrix \a cov is normalized before PCA.
//
// When set to NONE, no normalization is performed. This is the default.
//
// When set to TRIANGLE_SPECIFIED, each entry cov(i,j) is divided by V(i,j).
// The list V of normalization factors must be set using the SetNormalization method
// before the filter is executed.
//
// When set to DIAGONAL_SPECIFIED, each entry cov(i,j) is divided by sqrt(V(i)*V(j)).
// The list V of normalization factors must be set using the SetNormalization method
// before the filter is executed.
//
// When set to DIAGONAL_VARIANCE, each entry cov(i,j) is divided by sqrt(cov(i,i)*cov(j,j)).
// <b>Warning</b>: Although this is accepted practice in some fields,
// some people think you should not turn this option on unless there
// is a good physically-based reason for doing so. Much better instead
// to determine how component magnitudes should be compared using
// physical reasoning and use DIAGONAL_SPECIFIED, TRIANGLE_SPECIFIED, or
// perform some pre-processing to shift and scale input data columns
// appropriately than to expect magical results from a shady normalization hack.
vtkSetMacro(NormalizationScheme,int);
vtkGetMacro(NormalizationScheme,int);
virtual void SetNormalizationSchemeByName( const char* sname );
virtual const char* GetNormalizationSchemeName( int scheme );
// Description:
// These methods allow you to set/get values used to normalize the covariance matrix before PCA.
// The normalization values apply to all requests, so you do not specify a single
// vector but a 3-column table.
//
// The first two columns contain the names of columns from input 0 and the third column contains
// the value to normalize the corresponding entry in the covariance matrix.
// The table must always have 3 columns even when the NormalizationScheme is DIAGONAL_SPECIFIED.
// When only diagonal entries are to be used, only table rows where the first two columns are
// identical to one another will be employed.
// If there are multiple rows specifying different values for the same pair of columns,
// the entry nearest the bottom of the table takes precedence.
//
// These functions are actually convenience methods that set/get the third input of the filter.
// Because the table is the third input, you may use other filters to produce a table of
// normalizations and have the pipeline take care of updates.
//
// Any missing entries will be set to 1.0 and a warning issued.
// An error will occur if the third input to the filter is not set and the
// NormalizationScheme is DIAGONAL_SPECIFIED or TRIANGLE_SPECIFIED.
//
// NOTE: SetSpecifiedNormalization( table ) is equivalent to SetInputData(3, table)
// and therefore does not make a pipeline connection.
virtual vtkTable* GetSpecifiedNormalization();
virtual void SetSpecifiedNormalization( vtkTable* );
// Description:
// Get the eigenvalues. The eigenvalues are ordered according from largest to smallest.
// This function:
// void GetEigenvalues(int request, int i, vtkDoubleArray*);
// does all of the work. The other functions simply call this function with the appropriate
// parameters. These functions are not valid unless Update() has been called and the Derive
// option is turned on.
void GetEigenvalues(int request, vtkDoubleArray*);
void GetEigenvalues(vtkDoubleArray*);
double GetEigenvalue(int request, int i);
double GetEigenvalue(int i);
// Description:
// Get the eigenvectors. The eigenvectors are ordered according to the magnitude of their
// associated eigenvalues, sorted from largest to smallest. That is, eigenvector 0 corresponds
// to the largest eigenvalue.
// This function:
// void GetEigenvectors(int request, vtkDoubleArray* eigenvectors)
// does all of the work. The other functions are convenience functions that call this function
// with default arguments. These functions are not valid unless Update() has been called and the Derive
// option is turned on.
void GetEigenvectors(int request, vtkDoubleArray* eigenvectors);
void GetEigenvectors(vtkDoubleArray* eigenvectors);
void GetEigenvector(int i, vtkDoubleArray* eigenvector);
void GetEigenvector(int request, int i, vtkDoubleArray* eigenvector);
// Description:
// This variable controls the dimensionality of output tuples in Assess operation.
// Consider the case where you have requested a PCA on D columns.
//
// When set to vtkPCAStatistics::FULL_BASIS, the entire set of basis vectors
// is used to derive new coordinates for each tuple being assessed.
// In this mode, you are guaranteed to have output tuples of the same dimension
// as the input tuples. (That dimension is D, so there will be D additional
// columns added to the table for the request.)
//
// When set to vtkPCAStatistics::FIXED_BASIS_SIZE, only the first N basis vectors
// are used to derive new coordinates for each tuple being assessed.
// In this mode, you are guaranteed to have output tuples of dimension min(N,D).
// You must set N prior to assessing data using the SetFixedBasisSize() method.
// When N < D, this turns the PCA into a projection (instead of change of basis).
//
// When set to vtkPCAStatistics::FIXED_BASIS_ENERGY, the number of basis vectors
// used to derive new coordinates for each tuple will be the minimum number
// of columns N that satisfy
// \f[
// \frac{\sum_{i=1}^{N} \lambda_i}{\sum_{i=1}^{D} \lambda_i} < T
// \f]
// You must set T prior to assessing data using the SetFixedBasisEnergy() method.
// When T < 1, this turns the PCA into a projection (instead of change of basis).
//
// By default BasisScheme is set to vtkPCAStatistics::FULL_BASIS.
vtkSetMacro(BasisScheme,int);
vtkGetMacro(BasisScheme,int);
virtual const char* GetBasisSchemeName( int schemeIndex );
virtual void SetBasisSchemeByName( const char* schemeName );
// Description:
// The number of basis vectors to use. See SetBasisScheme() for more information.
// When FixedBasisSize <= 0 (the default), the fixed basis size scheme is equivalent to the full basis scheme.
vtkSetMacro(FixedBasisSize,int);
vtkGetMacro(FixedBasisSize,int);
// Description:
// The minimum energy the new basis should use, as a fraction. See SetBasisScheme() for more information.
// When FixedBasisEnergy >= 1 (the default), the fixed basis energy scheme is equivalent to the full basis scheme.
vtkSetClampMacro(FixedBasisEnergy,double,0.,1.);
vtkGetMacro(FixedBasisEnergy,double);
// Description:
// A convenience method (in particular for access from other applications) to
// set parameter values.
// Return true if setting of requested parameter name was excuted, false otherwise.
virtual bool SetParameter( const char* parameter,
int index,
vtkVariant value );
protected:
vtkPCAStatistics();
~vtkPCAStatistics();
// Description:
// This algorithm accepts a vtkTable containing normalization values for
// its fourth input (port 3).
// We override FillInputPortInformation to indicate this.
virtual int FillInputPortInformation( int port, vtkInformation* info );
// Description:
// Execute the calculations required by the Derive option.
virtual void Derive( vtkMultiBlockDataSet* );
// Description:
// Execute the calculations required by the Test option.
virtual void Test( vtkTable*,
vtkMultiBlockDataSet*,
vtkTable* );
// Description:
// Execute the calculations required by the Assess option.
virtual void Assess( vtkTable*,
vtkMultiBlockDataSet*,
vtkTable* );
//BTX
// Description:
// Calculate p-value. This will be overridden using the object factory with an
// R implementation if R is present.
virtual vtkDoubleArray* CalculatePValues(vtkIdTypeArray*, vtkDoubleArray*);
//BTX
// Description:
// Provide the appropriate assessment functor.
virtual void SelectAssessFunctor( vtkTable* inData,
vtkDataObject* inMeta,
vtkStringArray* rowNames,
AssessFunctor*& dfunc );
//ETX
int NormalizationScheme;
int BasisScheme;
int FixedBasisSize;
double FixedBasisEnergy;
//BTX
static const char* BasisSchemeEnumNames[NUM_BASIS_SCHEMES + 1];
static const char* NormalizationSchemeEnumNames[NUM_NORMALIZATION_SCHEMES + 1];
//ETX
private:
vtkPCAStatistics( const vtkPCAStatistics& ); // Not implemented
void operator = ( const vtkPCAStatistics& ); // Not implemented
};
#endif // vtkPCAStatistics_h
|