This file is indexed.

/usr/include/vtk-6.2/vtkImageEuclideanDistance.h is in libvtk6-dev 6.2.0+dfsg1-10build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkImageEuclideanDistance.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkImageEuclideanDistance - computes 3D Euclidean DT
// .SECTION Description
// vtkImageEuclideanDistance implements the Euclidean DT using
// Saito's algorithm. The distance map produced contains the square of the
// Euclidean distance values.
//
// The algorithm has a o(n^(D+1)) complexity over nxnx...xn images in D
// dimensions. It is very efficient on relatively small images. Cuisenaire's
// algorithms should be used instead if n >> 500. These are not implemented
// yet.
//
// For the special case of images where the slice-size is a multiple of
// 2^N with a large N (typically for 256x256 slices), Saito's algorithm
// encounters a lot of cache conflicts during the 3rd iteration which can
// slow it very significantly. In that case, one should use
// ::SetAlgorithmToSaitoCached() instead for better performance.
//
// References:
//
// T. Saito and J.I. Toriwaki. New algorithms for Euclidean distance
// transformations of an n-dimensional digitised picture with applications.
// Pattern Recognition, 27(11). pp. 1551--1565, 1994.
//
// O. Cuisenaire. Distance Transformation: fast algorithms and applications
// to medical image processing. PhD Thesis, Universite catholique de Louvain,
// October 1999. http://ltswww.epfl.ch/~cuisenai/papers/oc_thesis.pdf


#ifndef vtkImageEuclideanDistance_h
#define vtkImageEuclideanDistance_h

#include "vtkImagingGeneralModule.h" // For export macro
#include "vtkImageDecomposeFilter.h"

#define VTK_EDT_SAITO_CACHED 0
#define VTK_EDT_SAITO 1

class VTKIMAGINGGENERAL_EXPORT vtkImageEuclideanDistance : public vtkImageDecomposeFilter
{
public:
  static vtkImageEuclideanDistance *New();
  vtkTypeMacro(vtkImageEuclideanDistance,vtkImageDecomposeFilter);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Used internally for streaming and threads.
  // Splits output update extent into num pieces.
  // This method needs to be called num times.  Results must not overlap for
  // consistent starting extent.  Subclass can override this method.
  // This method returns the number of peices resulting from a
  // successful split.  This can be from 1 to "total".
  // If 1 is returned, the extent cannot be split.
  int SplitExtent(int splitExt[6], int startExt[6],
                  int num, int total);

  // Description:
  // Used to set all non-zero voxels to MaximumDistance before starting
  // the distance transformation. Setting Initialize off keeps the current
  // value in the input image as starting point. This allows to superimpose
  // several distance maps.
  vtkSetMacro(Initialize, int);
  vtkGetMacro(Initialize, int);
  vtkBooleanMacro(Initialize, int);

  // Description:
  // Used to define whether Spacing should be used in the computation of the
  // distances
  vtkSetMacro(ConsiderAnisotropy, int);
  vtkGetMacro(ConsiderAnisotropy, int);
  vtkBooleanMacro(ConsiderAnisotropy, int);

  // Description:
  // Any distance bigger than this->MaximumDistance will not ne computed but
  // set to this->MaximumDistance instead.
  vtkSetMacro(MaximumDistance, double);
  vtkGetMacro(MaximumDistance, double);

  // Description:
  // Selects a Euclidean DT algorithm.
  // 1. Saito
  // 2. Saito-cached
  // More algorithms will be added later on.
  vtkSetMacro(Algorithm, int);
  vtkGetMacro(Algorithm, int);
  void SetAlgorithmToSaito ()
    { this->SetAlgorithm(VTK_EDT_SAITO); }
  void SetAlgorithmToSaitoCached ()
    { this->SetAlgorithm(VTK_EDT_SAITO_CACHED); }

  virtual int IterativeRequestData(vtkInformation*,
                                   vtkInformationVector**,
                                   vtkInformationVector*);

protected:
  vtkImageEuclideanDistance();
  ~vtkImageEuclideanDistance() {}

  double MaximumDistance;
  int Initialize;
  int ConsiderAnisotropy;
  int Algorithm;

  // Replaces "EnlargeOutputUpdateExtent"
  virtual void AllocateOutputScalars(vtkImageData *outData,
                                     int outExt[6],
                                     vtkInformation* outInfo);

  virtual int IterativeRequestInformation(vtkInformation* in,
                                          vtkInformation* out);
  virtual int IterativeRequestUpdateExtent(vtkInformation* in,
                                           vtkInformation* out);

private:
  vtkImageEuclideanDistance(const vtkImageEuclideanDistance&);  // Not implemented.
  void operator=(const vtkImageEuclideanDistance&);  // Not implemented.
};

#endif