This file is indexed.

/usr/include/vtk-5.10/vtkStreamer.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkStreamer.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkStreamer - abstract object implements integration of massless particle through vector field
// .SECTION Description
// vtkStreamer is a filter that integrates a massless particle through a vector
// field. The integration is performed using second order Runge-Kutta method. 
// vtkStreamer often serves as a base class for other classes that perform 
// numerical integration through a vector field (e.g., vtkStreamLine).
//
// Note that vtkStreamer can integrate both forward and backward in time,
// or in both directions. The length of the streamer is controlled by 
// specifying an elapsed time. (The elapsed time is the time each particle 
// travels.) Otherwise, the integration terminates after exiting the dataset or
// if the particle speed is reduced to a value less than the terminal speed.
//
// vtkStreamer integrates through any type of dataset. As a result, if the 
// dataset contains 2D cells such as polygons or triangles, the integration is
// constrained to lie on the surface defined by the 2D cells.
//
// The starting point of streamers may be defined in three different ways.
// Starting from global x-y-z "position" allows you to start a single streamer
// at a specified x-y-z coordinate. Starting from "location" allows you to 
// start at a specified cell, subId, and parametric coordinate. Finally, you 
// may specify a source object to start multiple streamers. If you start 
// streamers using a source object, for each point in the source that is 
// inside the dataset a streamer is created.
//
// vtkStreamer implements the integration process in the Integrate() method.
// Because vtkStreamer does not implement the Execute() method that its 
// superclass (i.e., Filter) requires, it is an abstract class. Its subclasses
// implement the execute method and use the Integrate() method, and then build
// their own representation of the integration path (i.e., lines, dashed 
// lines, points, etc.).

// .SECTION See Also
// vtkStreamLine vtkDashedStreamLine vtkStreamPoints

#ifndef __vtkStreamer_h
#define __vtkStreamer_h

#include "vtkPolyDataAlgorithm.h"

class vtkInitialValueProblemSolver;
class vtkMultiThreader;

#define VTK_INTEGRATE_FORWARD 0
#define VTK_INTEGRATE_BACKWARD 1
#define VTK_INTEGRATE_BOTH_DIRECTIONS 2

class VTK_GRAPHICS_EXPORT vtkStreamer : public vtkPolyDataAlgorithm
{
public:
  vtkTypeMacro(vtkStreamer,vtkPolyDataAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Specify the start of the streamline in the cell coordinate system. That
  // is, cellId and subId (if composite cell), and parametric coordinates.
  void SetStartLocation(vtkIdType cellId, int subId, double pcoords[3]);

  // Description:
  // Specify the start of the streamline in the cell coordinate system. That
  // is, cellId and subId (if composite cell), and parametric coordinates.
  void SetStartLocation(vtkIdType cellId, int subId, double r, double s,
                        double t);

  // Description:
  // Get the starting location of the streamline in the cell coordinate system.
  vtkIdType GetStartLocation(int& subId, double pcoords[3]);

  // Description:
  // Specify the start of the streamline in the global coordinate
  // system. Search must be performed to find initial cell to start
  // integration from.
  void SetStartPosition(double x[3]);

  // Description:
  // Specify the start of the streamline in the global coordinate
  // system. Search must be performed to find initial cell to start
  // integration from.
  void SetStartPosition(double x, double y, double z);

  // Description:
  // Get the start position in global x-y-z coordinates.
  double *GetStartPosition();

  // Description:
  // Specify the source object used to generate starting points.
  void SetSource(vtkDataSet *source);
  vtkDataSet *GetSource();

  // Description:
  // Specify the maximum length of the Streamer expressed in elapsed time.
  vtkSetClampMacro(MaximumPropagationTime,double,0.0,VTK_DOUBLE_MAX);
  vtkGetMacro(MaximumPropagationTime,double);

  // Description:
  // Specify the direction in which to integrate the Streamer.
  vtkSetClampMacro(IntegrationDirection,int,
                   VTK_INTEGRATE_FORWARD,VTK_INTEGRATE_BOTH_DIRECTIONS);
  vtkGetMacro(IntegrationDirection,int);
  void SetIntegrationDirectionToForward()
    {this->SetIntegrationDirection(VTK_INTEGRATE_FORWARD);};
  void SetIntegrationDirectionToBackward()
    {this->SetIntegrationDirection(VTK_INTEGRATE_BACKWARD);};
  void SetIntegrationDirectionToIntegrateBothDirections()
    {this->SetIntegrationDirection(VTK_INTEGRATE_BOTH_DIRECTIONS);};
  const char *GetIntegrationDirectionAsString();

  // Description:
  // Specify a nominal integration step size (expressed as a fraction of
  // the size of each cell). This value can be larger than 1.
  vtkSetClampMacro(IntegrationStepLength,double,0.0000001,VTK_DOUBLE_MAX);
  vtkGetMacro(IntegrationStepLength,double);

  // Description:
  // Turn on/off the creation of scalar data from velocity magnitude. If off,
  // and input dataset has scalars, input dataset scalars are used.
  vtkSetMacro(SpeedScalars,int);
  vtkGetMacro(SpeedScalars,int);
  vtkBooleanMacro(SpeedScalars,int);

  // Description:
  // Turn on/off the creation of scalar data from vorticity information. 
  // The scalar information is currently the orientation value "theta"
  // used in rotating stream tubes. If off, and input dataset has scalars,
  // then input dataset scalars are used, unless SpeedScalars is also on.
  // SpeedScalars takes precedence over OrientationScalars.
  vtkSetMacro(OrientationScalars, int);
  vtkGetMacro(OrientationScalars, int);
  vtkBooleanMacro(OrientationScalars, int);

  // Description:
  // Set/get terminal speed (i.e., speed is velocity magnitude).  Terminal 
  // speed is speed at which streamer will terminate propagation.
  vtkSetClampMacro(TerminalSpeed,double,0.0,VTK_DOUBLE_MAX);
  vtkGetMacro(TerminalSpeed,double);

  // Description:
  // Turn on/off the computation of vorticity. Vorticity is an indication of
  // the rotation of the flow. In combination with vtkStreamLine and 
  // vtkTubeFilter can be used to create rotated tubes. 
  // If vorticity is turned on, in the output, the velocity vectors 
  // are replaced by vorticity vectors.
  vtkSetMacro(Vorticity,int);
  vtkGetMacro(Vorticity,int);
  vtkBooleanMacro(Vorticity,int);

  vtkSetMacro( NumberOfThreads, int );
  vtkGetMacro( NumberOfThreads, int );

  vtkSetMacro( SavePointInterval, double );
  vtkGetMacro( SavePointInterval, double );

  // Description:
  // Set/get the integrator type to be used in the stream line
  // calculation. The object passed is not actually used but
  // is cloned with NewInstance by each thread/process in the
  // process of integration (prototype pattern). The default is 
  // 2nd order Runge Kutta.
  void SetIntegrator(vtkInitialValueProblemSolver *);
  vtkGetObjectMacro ( Integrator, vtkInitialValueProblemSolver );

  // Description:
  // A positive value, as small as possible for numerical comparison.
  // The initial value is 1E-12.
  vtkSetMacro(Epsilon,double);
  vtkGetMacro(Epsilon,double);
  
protected:
  // Description:
  // Construct object to start from position (0,0,0); integrate forward;
  // terminal speed 0.0; vorticity computation off; integrations step length
  // 0.2; and maximum propagation time 100.0.
  vtkStreamer();
  ~vtkStreamer();

  // Integrate data
  void Integrate(vtkDataSet *input, vtkDataSet *source);

  // Controls where streamlines start from (either position or location).
  int StartFrom;

  // Starting from cell location
  vtkIdType StartCell;
  int StartSubId;
  double StartPCoords[3];

  // starting from global x-y-z position
  double StartPosition[3];

  //
  // Special classes for manipulating data
  //
  //BTX - begin tcl exclude
  //
  class StreamPoint {
  public:
    double    x[3];    // position 
    vtkIdType cellId;  // cell
    int       subId;   // cell sub id
    double    p[3];    // parametric coords in cell 
    double    v[3];    // velocity 
    double    speed;   // velocity norm 
    double    s;       // scalar value 
    double    t;       // time travelled so far 
    double    d;       // distance travelled so far 
    double    omega;   // stream vorticity, if computed
    double    theta;   // rotation angle, if vorticity is computed
  };

  class StreamArray;
  friend class StreamArray;
  class StreamArray { //;prevent man page generation
  public:
    StreamArray();
    ~StreamArray()
      {
        if (this->Array)
          {
          delete [] this->Array;
          }
      };
    vtkIdType GetNumberOfPoints() {return this->MaxId + 1;};
    StreamPoint *GetStreamPoint(vtkIdType i) {return this->Array + i;};
    vtkIdType InsertNextStreamPoint() 
      {
        if ( ++this->MaxId >= this->Size )
          {
          this->Resize(this->MaxId);
          }
        return this->MaxId; //return offset from array
      }
    StreamPoint *Resize(vtkIdType sz); //reallocates data
    void Reset() {this->MaxId = -1;};

    StreamPoint *Array;     // pointer to data
    vtkIdType MaxId;        // maximum index inserted thus far
    vtkIdType Size;         // allocated size of data
    vtkIdType Extend;       // grow array by this amount
    double Direction;       // integration direction
  };
  //ETX
  //

  //array of streamers
  StreamArray *Streamers;
  vtkIdType NumberOfStreamers;

  // length of Streamer is generated by time, or by MaximumSteps
  double MaximumPropagationTime;

  // integration direction
  int IntegrationDirection;

  // the length (fraction of cell size) of integration steps
  double IntegrationStepLength;

  // boolean controls whether vorticity is computed
  int Vorticity;

  // terminal propagation speed
  double TerminalSpeed;

  // boolean controls whether data scalars or velocity magnitude are used
  int SpeedScalars;

  // boolean controls whether data scalars or vorticity orientation are used
  int OrientationScalars;

  // Prototype showing the integrator type to be set by the user.
  vtkInitialValueProblemSolver* Integrator;

  // A positive value, as small as possible for numerical comparison.
  // The initial value is 1E-12.
  double Epsilon;
  
  // Interval with which the stream points will be stored.
  // Useful in reducing the memory footprint. Since the initial
  // value is small, by default, it will store all/most points.
  double SavePointInterval;

  static VTK_THREAD_RETURN_TYPE ThreadedIntegrate( void *arg );

  // Description:
  // These methods were added to allow access to these variables from the
  // threads. 
  vtkGetMacro( NumberOfStreamers, vtkIdType );
  StreamArray *GetStreamers() { return this->Streamers; };

  void InitializeThreadedIntegrate();
  vtkMultiThreader           *Threader;
  int                        NumberOfThreads;

  virtual int FillInputPortInformation(int port, vtkInformation *info);

private:
  vtkStreamer(const vtkStreamer&);  // Not implemented.
  void operator=(const vtkStreamer&);  // Not implemented.
};

// Description:
// Return the integration direction as a character string.
inline const char *vtkStreamer::GetIntegrationDirectionAsString()
{
  if ( this->IntegrationDirection == VTK_INTEGRATE_FORWARD ) 
    {
    return "IntegrateForward";
    }
  else if ( this->IntegrationDirection == VTK_INTEGRATE_BACKWARD ) 
    {
    return "IntegrateBackward";
    }
  else 
    {
    return "IntegrateBothDirections";
    }
}

#endif