/usr/include/vtk-5.10/vtkQuadraticHexahedron.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticHexahedron.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkQuadraticHexahedron - cell represents a parabolic, 20-node isoparametric hexahedron
// .SECTION Description
// vtkQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to
// represent a three-dimensional, 20-node isoparametric parabolic
// hexahedron. The interpolation is the standard finite element, quadratic
// isoparametric shape function. The cell includes a mid-edge node. The
// ordering of the twenty points defining the cell is point ids (0-7,8-19)
// where point ids 0-7 are the eight corner vertices of the cube; followed by
// twelve midedge nodes (8-19). Note that these midedge nodes correspond lie
// on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7),
// (7,4), (0,4), (1,5), (2,6), (3,7).
// .SECTION See Also
// vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
// vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge
#ifndef __vtkQuadraticHexahedron_h
#define __vtkQuadraticHexahedron_h
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkQuadraticQuad;
class vtkHexahedron;
class vtkDoubleArray;
class VTK_FILTERING_EXPORT vtkQuadraticHexahedron : public vtkNonLinearCell
{
public:
static vtkQuadraticHexahedron *New();
vtkTypeMacro(vtkQuadraticHexahedron,vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Implement the vtkCell API. See the vtkCell API for descriptions
// of these methods.
int GetCellType() {return VTK_QUADRATIC_HEXAHEDRON;}
int GetCellDimension() {return 3;}
int GetNumberOfEdges() {return 12;}
int GetNumberOfFaces() {return 6;}
vtkCell *GetEdge(int);
vtkCell *GetFace(int);
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
void Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights);
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights);
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs);
virtual double *GetParametricCoords();
// Description:
// Clip this quadratic hexahedron using scalar value provided. Like
// contouring, except that it cuts the hex to produce linear
// tetrahedron.
void Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *tetras,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut);
// Description:
// Line-edge intersection. Intersection has to occur within [0,1] parametric
// coordinates and with specified tolerance.
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId);
// Description:
// @deprecated Replaced by vtkQuadraticHexahedron::InterpolateFunctions as of VTK 5.2
static void InterpolationFunctions(double pcoords[3], double weights[20]);
// Description:
// @deprecated Replaced by vtkQuadraticHexahedron::InterpolateDerivs as of VTK 5.2
static void InterpolationDerivs(double pcoords[3], double derivs[60]);
// Description:
// Compute the interpolation functions/derivatives
// (aka shape functions/derivatives)
virtual void InterpolateFunctions(double pcoords[3], double weights[20])
{
vtkQuadraticHexahedron::InterpolationFunctions(pcoords,weights);
}
virtual void InterpolateDerivs(double pcoords[3], double derivs[60])
{
vtkQuadraticHexahedron::InterpolationDerivs(pcoords,derivs);
}
// Description:
// Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
// Ids are related to the cell, not to the dataset.
static int *GetEdgeArray(int edgeId);
static int *GetFaceArray(int faceId);
// Description:
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives.
void JacobianInverse(double pcoords[3], double **inverse, double derivs[60]);
protected:
vtkQuadraticHexahedron();
~vtkQuadraticHexahedron();
vtkQuadraticEdge *Edge;
vtkQuadraticQuad *Face;
vtkHexahedron *Hex;
vtkPointData *PointData;
vtkCellData *CellData;
vtkDoubleArray *CellScalars;
vtkDoubleArray *Scalars;
void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId,
vtkDataArray *cellScalars);
private:
vtkQuadraticHexahedron(const vtkQuadraticHexahedron&); // Not implemented.
void operator=(const vtkQuadraticHexahedron&); // Not implemented.
};
#endif
|