/usr/include/vtk-5.10/vtkOrderedTriangulator.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkOrderedTriangulator.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkOrderedTriangulator - helper class to generate triangulations
// .SECTION Description
// This class is used to generate unique triangulations of points. The
// uniqueness of the triangulation is controlled by the id of the inserted
// points in combination with a Delaunay criterion. The class is designed to
// be as fast as possible (since the algorithm can be slow) and uses block
// memory allocations to support rapid triangulation generation. Also, the
// assumption behind the class is that a maximum of hundreds of points are to
// be triangulated. If you desire more robust triangulation methods use
// vtkPolygon::Triangulate(), vtkDelaunay2D, or vtkDelaunay3D.
//
// .SECTION Background
// This work is documented in the technical paper: W.J. Schroeder, B. Geveci,
// M. Malaterre. Compatible Triangulations of Spatial Decompositions. In
// Proceedings of Visualization 2004, IEEE Press October 2004.
//
// Delaunay triangulations are unique assuming a random distribution of input
// points. The 3D Delaunay criterion is as follows: the circumsphere of each
// tetrahedron contains no other points of the triangulation except for the
// four points defining the tetrahedron. In application this property is
// hard to satisfy because objects like cubes are defined by eight points all
// sharing the same circumsphere (center and radius); hence the Delaunay
// triangulation is not unique. These so-called degenerate situations are
// typically resolved by arbitrary selecting a triangulation. This code does
// something different: it resolves degenerate triangulations by modifying
// the "InCircumsphere" method to use a slightly smaller radius. Hence,
// degenerate points are always considered "out" of the circumsphere. This,
// in combination with an ordering (based on id) of the input points,
// guarantees a unique triangulation.
//
// There is another related characteristic of Delaunay triangulations. Given
// a N-dimensional Delaunay triangulation, points lying on a (N-1) dimensional
// plane also form a (N-1) Delaunay triangulation. This means for example,
// that if a 3D cell is defined by a set of (2D) planar faces, then the
// face triangulations are Delaunay. Combining this with the method to
// generate unique triangulations described previously, the triangulations
// on the face are guaranteed unique. This fact can be used to triangulate
// 3D objects in such a way to guarantee compatible face triangulations.
// This is a very useful fact for parallel processing, or performing
// operations like clipping that require compatible triangulations across
// 3D cell faces. (See vtkClipVolume for an example.)
//
// A special feature of this class is that it can generate triangulation
// templates on the fly. If template triangulation is enabled, then the
// ordered triangulator will first triangulate the cell using the slower
// ordered Delaunay approach, and then store the result as a template.
// Later, if the same cell type and cell configuration is encountered,
// then the template is reused which greatly speeds the triangulation.
// .SECTION Caveats
// Duplicate vertices will be ignored, i.e., if two points have the same
// coordinates the second one is discarded. The implications are that the
// user of this class must prevent duplicate points. Because the precision
// of this algorithm is double, it's also a good idea to merge points
// that are within some epsilon of one another.
//
// The triangulation is performed using the parametric coordinates of the
// inserted points. Therefore the bounds (see InitTriangulation()) should
// represent the range of the parametric coordinates of the inserted points.
// .SECTION See Also
// vtkDelaunay2D vtkDelaunay3D vtkPolygon
#ifndef __vtkOrderedTriangulator_h
#define __vtkOrderedTriangulator_h
#include "vtkObject.h"
class vtkUnstructuredGrid;
class vtkCellArray;
class vtkHeap;
class vtkIdList;
class vtkPoints;
class vtkTetra;
class vtkDataArray;
class vtkDoubleArray;
struct vtkOTMesh;
struct vtkOTTemplates;
class vtkIncrementalPointLocator;
class vtkPointData;
class vtkCellData;
// Template ID's must be 32-bits. See .cxx file for more information.
#if VTK_SIZEOF_SHORT == 4
typedef unsigned short TemplateIDType;
#elif VTK_SIZEOF_INT == 4
typedef unsigned int TemplateIDType;
#elif VTK_SIZEOF_LONG == 4
typedef unsigned long TemplateIDType;
#endif
class VTK_FILTERING_EXPORT vtkOrderedTriangulator : public vtkObject
{
public:
vtkTypeMacro(vtkOrderedTriangulator,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct object.
static vtkOrderedTriangulator *New();
// Description:
// Initialize the triangulation process. Provide a bounding box and
// the maximum number of points to be inserted. Note that since the
// triangulation is performed using parametric coordinates (see
// InsertPoint()) the bounds should be represent the range of the
// parametric coordinates inserted.
// \post no_point_inserted: GetNumberOfPoints()==0
void InitTriangulation(double xmin, double xmax, double ymin, double ymax,
double zmin, double zmax, int numPts);
void InitTriangulation(double bounds[6], int numPts);
// Description:
// For each point to be inserted, provide an id, a position x, parametric
// coordinate p, and whether the point is inside (type=0), outside
// (type=1), or on the boundary (type=2). You must call InitTriangulation()
// prior to invoking this method. Make sure that the number of points
// inserted does not exceed the numPts specified in
// InitTriangulation(). Also note that the "id" can be any integer and can
// be greater than numPts. It is used to create tetras (in AddTetras()) with
// the appropriate connectivity ids. The method returns an internal id that
// can be used prior to the Triangulate() method to update the type of the
// point with UpdatePointType(). (Note: the algorithm triangulated with the
// parametric coordinate p[3] and creates tetras with the global coordinate
// x[3]. The parametric coordinates and global coordinates may be the same.)
vtkIdType InsertPoint(vtkIdType id, double x[3], double p[3], int type);
vtkIdType InsertPoint(vtkIdType id, vtkIdType sortid, double x[3],
double p[3], int type);
vtkIdType InsertPoint(vtkIdType id, vtkIdType sortid, vtkIdType sortid2,
double x[3], double p[3], int type);
// Description:
// Perform the triangulation. (Complete all calls to InsertPoint() prior
// to invoking this method.) A special version is available when templates
// should be used.
void Triangulate();
void TemplateTriangulate(int cellType, int numPts, int numEdges);
// Description:
// Update the point type. This is useful when the merging of nearly
// coincident points is performed. The id is the internal id returned
// from InsertPoint(). The method should be invoked prior to the
// Triangulate method. The type is specified as inside (type=0),
// outside (type=1), or on the boundary (type=2).
// \pre valid_range: internalId>=0 && internalId<this->GetNumberOfPoints()
void UpdatePointType(vtkIdType internalId, int type);
// Description:
// Return the parametric coordinates of point `internalId'.
// It assumes that the point has already been inserted.
// The method should be invoked prior to the Triangulate method.
// \pre valid_range: internalId>=0 && internalId<this->GetNumberOfPoints()
double *GetPointPosition(vtkIdType internalId);
// Description:
// Return the global coordinates of point `internalId'.
// It assumes that the point has already been inserted.
// The method should be invoked prior to the Triangulate method.
// \pre valid_range: internalId>=0 && internalId<this->GetNumberOfPoints()
double *GetPointLocation(vtkIdType internalId);
// Description:
// Return the Id of point `internalId'. This id is the one passed in
// argument of InsertPoint.
// It assumes that the point has already been inserted.
// The method should be invoked prior to the Triangulate method.
// \pre valid_range: internalId>=0 && internalId<this->GetNumberOfPoints()
vtkIdType GetPointId(vtkIdType internalId);
// Description:
// Return the number of inserted points.
vtkGetMacro(NumberOfPoints,int);
// Description:
// If this flag is set, then the ordered triangulator will create
// and use templates for the triangulation. To use templates, the
// TemplateTriangulate() method should be called when appropriate.
// (Note: the TemplateTriangulate() method works for complete
// (interior) cells without extra points due to intersection, etc.)
vtkSetMacro(UseTemplates,int);
vtkGetMacro(UseTemplates,int);
vtkBooleanMacro(UseTemplates,int);
// Description:
// Boolean indicates whether the points have been pre-sorted. If
// pre-sorted is enabled, the points are not sorted on point id.
// By default, presorted is off. (The point id is defined in
// InsertPoint().)
vtkSetMacro(PreSorted,int);
vtkGetMacro(PreSorted,int);
vtkBooleanMacro(PreSorted,int);
// Description:
// Tells the triangulator that a second sort id is provided
// for each point and should also be considered when sorting.
vtkSetMacro(UseTwoSortIds,int);
vtkGetMacro(UseTwoSortIds,int);
vtkBooleanMacro(UseTwoSortIds,int);
// Description:
// Initialize and add the tetras and points from the triangulation to the
// unstructured grid provided. New points are created and the mesh is
// allocated. (This method differs from AddTetras() in that it inserts
// points and cells; AddTetras only adds the tetra cells.) The tetrahdera
// added are of the type specified (0=inside,1=outside,2=all). Inside
// tetrahedron are those whose points are classified "inside" or on the
// "boundary." Outside tetrahedron have at least one point classified
// "outside." The method returns the number of tetrahedrahedron of the
// type requested.
vtkIdType GetTetras(int classification, vtkUnstructuredGrid *ugrid);
// Description:
// Add the tetras to the unstructured grid provided. The unstructured
// grid is assumed to have been initialized (with Allocate()) and
// points set (with SetPoints()). The tetrahdera added are of the type
// specified (0=inside,1=outside,2=all). Inside tetrahedron are
// those whose points are classified "inside" or on the "boundary."
// Outside tetrahedron have at least one point classified "outside."
// The method returns the number of tetrahedrahedron of the type
// requested.
vtkIdType AddTetras(int classification, vtkUnstructuredGrid *ugrid);
// Description:
// Add the tetrahedra classified (0=inside,1=outside) to the connectivity
// list provided. Inside tetrahedron are those whose points are all
// classified "inside." Outside tetrahedron have at least one point
// classified "outside." The method returns the number of tetrahedron
// of the type requested.
vtkIdType AddTetras(int classification, vtkCellArray *connectivity);
// Description:
// Assuming that all the inserted points come from a cell `cellId' to
// triangulate, get the tetrahedra in outConnectivity, the points in locator
// and copy point data and cell data. Return the number of added tetras.
// \pre locator_exists: locator!=0
// \pre outConnectivity: outConnectivity!=0
// \pre inPD_exists: inPD!=0
// \pre outPD_exists: outPD!=0
// \pre inCD_exists: inCD!=0
// \pre outCD_exists: outCD!=0
vtkIdType AddTetras(int classification,
vtkIncrementalPointLocator *locator,
vtkCellArray *outConnectivity,
vtkPointData *inPD,
vtkPointData *outPD,
vtkCellData *inCD,
vtkIdType cellId,
vtkCellData *outCD);
// Description:
// Add the tetrahedra classified (0=inside,1=outside) to the list
// of ids and coordinates provided. These assume that the first four points
// form a tetrahedron, the next four the next, and so on.
vtkIdType AddTetras(int classification, vtkIdList *ptIds, vtkPoints *pts);
// Description:
// Add the triangle faces classified (2=boundary) to the connectivity
// list provided. The method returns the number of triangles.
vtkIdType AddTriangles(vtkCellArray *connectivity);
// Description:
// Add the triangle faces classified (2=boundary) and attached to the
// specified point id to the connectivity list provided. (The id is the
// same as that specified in InsertPoint().)
vtkIdType AddTriangles(vtkIdType id, vtkCellArray *connectivity);
// Description:
// Methods to get one tetra at a time. Start with InitTetraTraversal()
// and then invoke GetNextTetra() until the method returns 0.
void InitTetraTraversal();
// Description:
// Methods to get one tetra at a time. Start with InitTetraTraversal()
// and then invoke GetNextTetra() until the method returns 0.
// cellScalars are point-centered scalars on the original cell.
// tetScalars are point-centered scalars on the tetra: the values will be
// copied from cellScalars.
// \pre tet_exists: tet!=0
// \pre cellScalars_exists: cellScalars!=0
// \pre tetScalars_exists: tetScalars!=0
// \pre tetScalars_valid_size: tetScalars->GetNumberOfTuples()==4
int GetNextTetra(int classification, vtkTetra *tet,
vtkDataArray *cellScalars, vtkDoubleArray *tetScalars);
protected:
vtkOrderedTriangulator();
~vtkOrderedTriangulator();
private:
void Initialize();
vtkOTMesh *Mesh;
int NumberOfPoints; //number of points inserted
int MaximumNumberOfPoints; //maximum possible number of points to be inserted
double Bounds[6];
int PreSorted;
int UseTwoSortIds;
vtkHeap *Heap;
double Quanta;
int UseTemplates;
int CellType;
int NumberOfCellPoints;
int NumberOfCellEdges;
vtkHeap *TemplateHeap;
vtkOTTemplates *Templates;
int TemplateTriangulation();
void AddTemplate();
TemplateIDType ComputeTemplateIndex();
private:
vtkOrderedTriangulator(const vtkOrderedTriangulator&); // Not implemented.
void operator=(const vtkOrderedTriangulator&); // Not implemented.
};
#endif
|