This file is indexed.

/usr/include/vtk-5.10/vtkMath.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkMath.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================
  Copyright 2011 Sandia Corporation.
  Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
  license for use of this work by or on behalf of the
  U.S. Government. Redistribution and use in source and binary forms, with
  or without modification, are permitted provided that this Notice and any
  statement of authorship are reproduced on all copies.

  Contact: pppebay@sandia.gov,dcthomp@sandia.gov

=========================================================================*/
// .NAME vtkMath - performs common math operations
// .SECTION Description
// vtkMath provides methods to perform common math operations. These
// include providing constants such as Pi; conversion from degrees to
// radians; vector operations such as dot and cross products and vector
// norm; matrix determinant for 2x2 and 3x3 matrices; univariate polynomial
// solvers; and for random number generation (for backward compatibility only).
// .SECTION See Also
// vtkMinimalStandardRandomSequence, vtkBoxMuellerRandomSequence

#ifndef __vtkMath_h
#define __vtkMath_h

#include "vtkObject.h"
#ifndef VTK_LEGACY_REMOVE
# include "vtkPolynomialSolversUnivariate.h" // For backwards compatibility of old solvers
#endif

#include <assert.h> // assert() in inline implementations.

#ifndef DBL_MIN
#  define VTK_DBL_MIN    2.2250738585072014e-308
#else  // DBL_MIN
#  define VTK_DBL_MIN    DBL_MIN
#endif  // DBL_MIN

#ifndef DBL_EPSILON
#  define VTK_DBL_EPSILON    2.2204460492503131e-16
#else  // DBL_EPSILON
#  define VTK_DBL_EPSILON    DBL_EPSILON
#endif  // DBL_EPSILON
#include "vtkMathConfigure.h" // For VTK_HAS_ISINF and VTK_HAS_ISNAN

#include <assert.h> // assert() in inline implementations.

#ifndef VTK_DBL_EPSILON
#  ifndef DBL_EPSILON
#    define VTK_DBL_EPSILON    2.2204460492503131e-16
#  else  // DBL_EPSILON
#    define VTK_DBL_EPSILON    DBL_EPSILON
#  endif  // DBL_EPSILON
#endif  // VTK_DBL_EPSILON

class vtkDataArray;
class vtkPoints;
class vtkMathInternal;
class vtkMinimalStandardRandomSequence;
class vtkBoxMuellerRandomSequence;

class VTK_COMMON_EXPORT vtkMath : public vtkObject
{
public:
  static vtkMath *New();
  vtkTypeMacro(vtkMath,vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // A mathematical constant. This version is 3.14159265358979f.
  static float Pi() { return 3.14159265358979f; };

  // Description:
  // A mathematical constant (double-precision version). This version
  // is 6.283185307179586.
  static double DoubleTwoPi() { return  6.283185307179586; };

  // Description:
  // A mathematical constant (double-precision version). This version
  // is 3.1415926535897932384626.
  static double DoublePi() { return 3.1415926535897932384626; };

  // Description:
  // Convert degrees into radians
  static float RadiansFromDegrees( float degrees);
  static double RadiansFromDegrees( double degrees);

  // Description:
  // Convert radians into degrees
  static float DegreesFromRadians( float radians);
  static double DegreesFromRadians( double radians);

  // Description:
  // Rounds a float to the nearest integer.
  static int Round(float f) {
    return static_cast<int>( f + ( f >= 0 ? 0.5 : -0.5 ) ); }
  static int Round(double f) {
    return static_cast<int>( f + ( f >= 0 ? 0.5 : -0.5 ) ); }

  // Description:
  // Rounds a double to the nearest integer not greater than itself.
  // This is faster than floor() but provides undefined output on
  // overflow.
  static int Floor(double x);

  // Description:
  // Rounds a double to the nearest integer not less than itself.
  // This is faster than ceil() but provides undefined output on
  // overflow.
  static int Ceil(double x);

  // Description:
  // Compute N factorial, N! = N*(N-1) * (N-2)...*3*2*1.
  // 0! is taken to be 1.
  static vtkTypeInt64 Factorial( int N );

  // Description:
  // The number of combinations of n objects from a pool of m objects (m>n).
  // This is commonly known as "m choose n" and sometimes denoted \f$_mC_n\f$
  // or \f$\left(\begin{array}{c}m \\ n\end{array}\right)\f$.
  static vtkTypeInt64 Binomial( int m, int n );

  // Description:
  // Start iterating over "m choose n" objects.
  // This function returns an array of n integers, each from 0 to m-1.
  // These integers represent the n items chosen from the set [0,m[.
  //
  // You are responsible for calling vtkMath::FreeCombination() once the iterator is no longer needed.
  //
  // Warning: this gets large very quickly, especially when n nears m/2!
  // (Hint: think of Pascal's triangle.)
  static int* BeginCombination( int m, int n );

  // Description:
  // Given \a m, \a n, and a valid \a combination of \a n integers in
  // the range [0,m[, this function alters the integers into the next
  // combination in a sequence of all combinations of \a n items from
  // a pool of \a m.
  //
  // If the \a combination is the last item in the sequence on input,
  // then \a combination is unaltered and 0 is returned.
  // Otherwise, 1 is returned and \a combination is updated.
  static int NextCombination( int m, int n, int* combination );

  // Description:
  // Free the "iterator" array created by vtkMath::BeginCombination.
  static void FreeCombination( int* combination);

  // Description:
  // Initialize seed value. NOTE: Random() has the bad property that
  // the first random number returned after RandomSeed() is called
  // is proportional to the seed value! To help solve this, call
  // RandomSeed() a few times inside seed. This doesn't ruin the
  // repeatability of Random().
  //
  // DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
  // THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
  // THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
  // Instead, for a sequence of random numbers with a uniform distribution
  // create a vtkMinimalStandardRandomSequence object.
  // For a sequence of random numbers with a gaussian/normal distribution
  // create a vtkBoxMuellerRandomSequence object.
  static void RandomSeed(int s);

  // Description:
  // Return the current seed used by the random number generator.
  //
  // DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
  // THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
  // THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
  // Instead, for a sequence of random numbers with a uniform distribution
  // create a vtkMinimalStandardRandomSequence object.
  // For a sequence of random numbers with a gaussian/normal distribution
  // create a vtkBoxMuellerRandomSequence object.
  static int GetSeed();

  // Description:
  // Generate pseudo-random numbers distributed according to the uniform
  // distribution between 0.0 and 1.0.
  // This is used to provide portability across different systems.
  //
  // DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
  // THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
  // THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
  // Instead, for a sequence of random numbers with a uniform distribution
  // create a vtkMinimalStandardRandomSequence object.
  // For a sequence of random numbers with a gaussian/normal distribution
  // create a vtkBoxMuellerRandomSequence object.
  static double Random();

  // Description:
  // Generate  pseudo-random numbers distributed according to the uniform
  // distribution between \a min and \a max.
  //
  // DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
  // THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
  // THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
  // Instead, for a sequence of random numbers with a uniform distribution
  // create a vtkMinimalStandardRandomSequence object.
  // For a sequence of random numbers with a gaussian/normal distribution
  // create a vtkBoxMuellerRandomSequence object.
  static double Random( double min, double max );

  // Description:
  // Generate pseudo-random numbers distributed according to the standard
  // normal distribution.
  //
  // DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
  // THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
  // THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
  // Instead, for a sequence of random numbers with a uniform distribution
  // create a vtkMinimalStandardRandomSequence object.
  // For a sequence of random numbers with a gaussian/normal distribution
  // create a vtkBoxMuellerRandomSequence object.
  static double Gaussian();

  // Description:
  // Generate  pseudo-random numbers distributed according to the Gaussian
  // distribution with mean \a mean and standard deviation \a std.
  //
  // DON'T USE Random(), RandomSeed(), GetSeed(), Gaussian()
  // THIS IS STATIC SO THIS IS PRONE TO ERRORS (SPECIALLY FOR REGRESSION TESTS)
  // THIS IS HERE FOR BACKWARD COMPATIBILITY ONLY.
  // Instead, for a sequence of random numbers with a uniform distribution
  // create a vtkMinimalStandardRandomSequence object.
  // For a sequence of random numbers with a gaussian/normal distribution
  // create a vtkBoxMuellerRandomSequence object.
  static double Gaussian( double mean, double std );

  // Description:
  // Addition of two 3-vectors (float version). Result is stored in c.
  static void Add(const float a[3], const float b[3], float c[3]) {
    for (int i = 0; i < 3; ++i)
      c[i] = a[i] + b[i];
  }

  // Description:
  // Addition of two 3-vectors (double version). Result is stored in c.
  static void Add(const double a[3], const double b[3], double c[3]) {
    for (int i = 0; i < 3; ++i)
      c[i] = a[i] + b[i];
  }

  // Description:
  // Subtraction of two 3-vectors (float version). Result is stored in c according to c = a - b.
  static void Subtract(const float a[3], const float b[3], float c[3]) {
    for (int i = 0; i < 3; ++i)
      c[i] = a[i] - b[i];
  }

  // Description:
  // Subtraction of two 3-vectors (double version). Result is stored in c according to c = a - b.
  static void Subtract(const double a[3], const double b[3], double c[3]) {
    for (int i = 0; i < 3; ++i)
      c[i] = a[i] - b[i];
  }

  // Description:
  // Multiplies a 3-vector by a scalar (float version).
  // This modifies the input 3-vector.
  static void MultiplyScalar(float a[3], float s) {
    for (int i = 0; i < 3; ++i)
      a[i] *= s;
  }

  // Description:
  // Multiplies a 2-vector by a scalar (float version).
  // This modifies the input 2-vector.
  static void MultiplyScalar2D(float a[2], float s) {
    for (int i = 0; i < 2; ++i)
      a[i] *= s;
  }

  // Description:
  // Multiplies a 3-vector by a scalar (double version).
  // This modifies the input 3-vector.
  static void MultiplyScalar(double a[3], double s) {
    for (int i = 0; i < 3; ++i)
      a[i] *= s;
  }

  // Description:
  // Multiplies a 2-vector by a scalar (double version).
  // This modifies the input 2-vector.
  static void MultiplyScalar2D(double a[2], double s) {
    for (int i = 0; i < 2; ++i)
      a[i] *= s;
  }

  // Description:
  // Dot product of two 3-vectors (float version).
  static float Dot(const float x[3], const float y[3]) {
    return ( x[0] * y[0] + x[1] * y[1] + x[2] * y[2] );};

  // Description:
  // Dot product of two 3-vectors (double-precision version).
  static double Dot(const double x[3], const double y[3]) {
    return ( x[0] * y[0] + x[1] * y[1] + x[2] * y[2] );};

  // Description:
  // Outer product of two 3-vectors (float version).
  static void Outer(const float x[3], const float y[3], float A[3][3]) {
    for (int i=0; i < 3; i++)
      for (int j=0; j < 3; j++)
        A[i][j] = x[i] * y[j];
  }
  // Description:
  // Outer product of two 3-vectors (double-precision version).
  static void Outer(const double x[3], const double y[3], double A[3][3]) {
    for (int i=0; i < 3; i++)
      for (int j=0; j < 3; j++)
        A[i][j] = x[i] * y[j];
  }

  // Description:
  // Cross product of two 3-vectors. Result (a x b) is stored in z.
  static void Cross(const float x[3], const float y[3], float z[3]);

  // Description:
  // Cross product of two 3-vectors. Result (a x b) is stored in z. (double-precision
  // version)
  static void Cross(const double x[3], const double y[3], double z[3]);

  // Description:
  // Compute the norm of n-vector. x is the vector, n is its length.
  static float Norm(const float* x, int n);
  static double Norm(const double* x, int n);

  // Description:
  // Compute the norm of 3-vector.
  static float Norm(const float x[3]) {
    return static_cast<float> (sqrt( x[0] * x[0] + x[1] * x[1] + x[2] * x[2] ) );};

  // Description:
  // Compute the norm of 3-vector (double-precision version).
  static double Norm(const double x[3]) {
    return sqrt( x[0] * x[0] + x[1] * x[1] + x[2] * x[2] );};

  // Description:
  // Normalize (in place) a 3-vector. Returns norm of vector.
  static float Normalize(float x[3]);

  // Description:
  // Normalize (in place) a 3-vector. Returns norm of vector
  // (double-precision version).
  static double Normalize(double x[3]);

  // Description:
  // Given a unit vector x, find two unit vectors y and z such that
  // x cross y = z (i.e. the vectors are perpendicular to each other).
  // There is an infinite number of such vectors, specify an angle theta
  // to choose one set.  If you want only one perpendicular vector,
  // specify NULL for z.
  static void Perpendiculars(const double x[3], double y[3], double z[3],
                             double theta);
  static void Perpendiculars(const float x[3], float y[3], float z[3],
                             double theta);

  // Description:
  // Compute the projection of vector a on vector b and return it in projection[3].
  // If b is a zero vector, the function returns false and 'projection' is invalid.
  // Otherwise, it returns true.
  static bool ProjectVector(const float a[3], const float b[3], float projection[3]);
  static bool ProjectVector(const double a[3], const double b[3], double projection[3]);

  // Description:
  // Compute the projection of 2D vector 'a' on 2D vector 'b' and returns the result
  // in projection[2].
  // If b is a zero vector, the function returns false and 'projection' is invalid.
  // Otherwise, it returns true.
  static bool ProjectVector2D(const float a[2], const float b[2], float projection[2]);
  static bool ProjectVector2D(const double a[2], const double b[2], double projection[2]);

  // Description:
  // Compute distance squared between two points x and y.
  static float Distance2BetweenPoints(const float x[3], const float y[3]);

  // Description:
  // Compute distance squared between two points x and y(double precision version).
  static double Distance2BetweenPoints(const double x[3], const double y[3]);

  // Description:
  // Compute the amplitude of a Gaussian function with mean=0 and specified variance.
  // That is, 1./(sqrt(2 Pi * variance)) * exp(-distanceFromMean^2/(2.*variance)).
  static double GaussianAmplitude(const double variance, const double distanceFromMean);

  // Description:
  // Compute the amplitude of a Gaussian function with specified mean and variance.
  // That is, 1./(sqrt(2 Pi * variance)) * exp(-(position - mean)^2/(2.*variance)).
  static double GaussianAmplitude(const double mean, const double variance, const double position);

  // Description:
  // Compute the amplitude of an unnormalized Gaussian function with mean=0 and specified variance.
  // That is, exp(-distanceFromMean^2/(2.*variance)). When distanceFromMean = 0, this function
  // returns 1.
  static double GaussianWeight(const double variance, const double distanceFromMean);

  // Description:
  // Compute the amplitude of an unnormalized Gaussian function with specified mean and variance.
  // That is, exp(-(position - mean)^2/(2.*variance)). When the distance from 'position' to 'mean'
  // is 0, this function returns 1.
  static double GaussianWeight(const double mean, const double variance, const double position);

  // Description:
  // Dot product of two 2-vectors.
  static float Dot2D(const float x[2], const float y[2]) {
    return ( x[0] * y[0] + x[1] * y[1] );};

  // Description:
  // Dot product of two 2-vectors. (double-precision version).
  static double Dot2D(const double x[2], const double y[2]) {
    return ( x[0] * y[0] + x[1] * y[1] );};

  // Description:
  // Outer product of two 2-vectors (float version).
  static void Outer2D(const float x[2], const float y[2], float A[2][2])
    {
    for (int i=0; i < 2; i++)
      {
      for (int j=0; j < 2; j++)
        {
        A[i][j] = x[i] * y[j];
        }
      }
    }
  // Description:
  // Outer product of two 2-vectors (float version).
  static void Outer2D(const double x[2], const double y[2], double A[2][2])
    {
    for (int i=0; i < 2; i++)
      {
      for (int j=0; j < 2; j++)
        {
        A[i][j] = x[i] * y[j];
        }
      }
    }

  // Description:
  // Compute the norm of a 2-vector.
  static float Norm2D(const float x[2]) {
    return static_cast<float> (sqrt( x[0] * x[0] + x[1] * x[1] ) );};

  // Description:
  // Compute the norm of a 2-vector.
  // (double-precision version).
  static double Norm2D(const double x[2]) {
    return sqrt( x[0] * x[0] + x[1] * x[1] );};

  // Description:
  // Normalize (in place) a 2-vector. Returns norm of vector.
  static float Normalize2D(float x[2]);

  // Description:
  // Normalize (in place) a 2-vector. Returns norm of vector.
  // (double-precision version).
  static double Normalize2D(double x[2]);

  // Description:
  // Compute determinant of 2x2 matrix. Two columns of matrix are input.
  static float Determinant2x2(const float c1[2], const float c2[2]) {
    return (c1[0] * c2[1] - c2[0] * c1[1] );};

  // Description:
  // Calculate the determinant of a 2x2 matrix: | a b | | c d |
  static double Determinant2x2(double a, double b, double c, double d) {
    return (a * d - b * c);};
  static double Determinant2x2(const double c1[2], const double c2[2]) {
    return (c1[0] * c2[1] - c2[0] * c1[1] );};

  // Description:
  // LU Factorization of a 3x3 matrix.
  static void LUFactor3x3(float A[3][3], int index[3]);
  static void LUFactor3x3(double A[3][3], int index[3]);

  // Description:
  // LU back substitution for a 3x3 matrix.
  static void LUSolve3x3(const float A[3][3], const int index[3],
                         float x[3]);
  static void LUSolve3x3(const double A[3][3], const int index[3],
                         double x[3]);

  // Description:
  // Solve Ay = x for y and place the result in y.  The matrix A is
  // destroyed in the process.
  static void LinearSolve3x3(const float A[3][3], const float x[3],
                             float y[3]);
  static void LinearSolve3x3(const double A[3][3], const double x[3],
                             double y[3]);

  // Description:
  // Multiply a vector by a 3x3 matrix.  The result is placed in out.
  static void Multiply3x3(const float A[3][3], const float in[3],
                          float out[3]);
  static void Multiply3x3(const double A[3][3], const double in[3],
                          double out[3]);

  // Description:
  // Multiply one 3x3 matrix by another according to C = AB.
  static void Multiply3x3(const float A[3][3], const float B[3][3],
                          float C[3][3]);
  static void Multiply3x3(const double A[3][3], const double B[3][3],
                          double C[3][3]);

  // Description:
  // General matrix multiplication.  You must allocate output storage.
  // colA == rowB
  // and matrix C is rowA x colB
  static void MultiplyMatrix(const double **A, const double **B,
                             unsigned int rowA, unsigned int colA,
                             unsigned int rowB, unsigned int colB,
                             double **C);

  // Description:
  // Transpose a 3x3 matrix. The input matrix is A. The output
  // is stored in AT.
  static void Transpose3x3(const float A[3][3], float AT[3][3]);
  static void Transpose3x3(const double A[3][3], double AT[3][3]);

  // Description:
  // Invert a 3x3 matrix. The input matrix is A. The output is
  // stored in AI.
  static void Invert3x3(const float A[3][3], float AI[3][3]);
  static void Invert3x3(const double A[3][3], double AI[3][3]);

  // Description:
  // Set A to the identity matrix.
  static void Identity3x3(float A[3][3]);
  static void Identity3x3(double A[3][3]);

  // Description:
  // Return the determinant of a 3x3 matrix.
  static double Determinant3x3(float A[3][3]);
  static double Determinant3x3(double A[3][3]);

  // Description:
  // Compute determinant of 3x3 matrix. Three columns of matrix are input.
  static float Determinant3x3(const float c1[3],
                              const float c2[3],
                              const float c3[3]);

  // Description:
  // Compute determinant of 3x3 matrix. Three columns of matrix are input.
  static double Determinant3x3(const double c1[3],
                               const double c2[3],
                               const double c3[3]);

  // Description:
  // Calculate the determinant of a 3x3 matrix in the form:
  //     | a1,  b1,  c1 |
  //     | a2,  b2,  c2 |
  //     | a3,  b3,  c3 |
  static double Determinant3x3(double a1, double a2, double a3,
                               double b1, double b2, double b3,
                               double c1, double c2, double c3);

  // Description:
  // Convert a quaternion to a 3x3 rotation matrix.  The quaternion
  // does not have to be normalized beforehand.
  static void QuaternionToMatrix3x3(const float quat[4], float A[3][3]);
  static void QuaternionToMatrix3x3(const double quat[4], double A[3][3]);

  // Description:
  // Convert a 3x3 matrix into a quaternion.  This will provide the
  // best possible answer even if the matrix is not a pure rotation matrix.
  // The method used is that of B.K.P. Horn.
  static void Matrix3x3ToQuaternion(const float A[3][3], float quat[4]);
  static void Matrix3x3ToQuaternion(const double A[3][3], double quat[4]);

  // Description:
  // Multiply two quaternions. This is used to concatenate rotations
  static void MultiplyQuaternion( const float q1[4], const float q2[4],  float q[4] );
  static void MultiplyQuaternion( const double q1[4], const double q2[4],  double q[4] );

  // Description:
  // Orthogonalize a 3x3 matrix and put the result in B.  If matrix A
  // has a negative determinant, then B will be a rotation plus a flip
  // i.e. it will have a determinant of -1.
  static void Orthogonalize3x3(const float A[3][3], float B[3][3]);
  static void Orthogonalize3x3(const double A[3][3], double B[3][3]);

  // Description:
  // Diagonalize a symmetric 3x3 matrix and return the eigenvalues in
  // w and the eigenvectors in the columns of V.  The matrix V will
  // have a positive determinant, and the three eigenvectors will be
  // aligned as closely as possible with the x, y, and z axes.
  static void Diagonalize3x3(const float A[3][3], float w[3], float V[3][3]);
  static void Diagonalize3x3(const double A[3][3],double w[3],double V[3][3]);

  // Description:
  // Perform singular value decomposition on a 3x3 matrix.  This is not
  // done using a conventional SVD algorithm, instead it is done using
  // Orthogonalize3x3 and Diagonalize3x3.  Both output matrices U and VT
  // will have positive determinants, and the w values will be arranged
  // such that the three rows of VT are aligned as closely as possible
  // with the x, y, and z axes respectively.  If the determinant of A is
  // negative, then the three w values will be negative.
  static void SingularValueDecomposition3x3(const float A[3][3],
                                            float U[3][3], float w[3],
                                            float VT[3][3]);
  static void SingularValueDecomposition3x3(const double A[3][3],
                                            double U[3][3], double w[3],
                                            double VT[3][3]);

  // Description:
  // Solve linear equations Ax = b using Crout's method. Input is square
  // matrix A and load vector x. Solution x is written over load vector. The
  // dimension of the matrix is specified in size. If error is found, method
  // returns a 0.
  static int SolveLinearSystem(double **A, double *x, int size);

  // Description:
  // Invert input square matrix A into matrix AI.
  // Note that A is modified during
  // the inversion. The size variable is the dimension of the matrix. Returns 0
  // if inverse not computed.
  static int InvertMatrix(double **A, double **AI, int size);

  // Description:
  // Thread safe version of InvertMatrix method.
  // Working memory arrays tmp1SIze and tmp2Size
  // of length size must be passed in.
  static int InvertMatrix(double **A, double **AI, int size,
                          int *tmp1Size, double *tmp2Size);

  // Description:
  // Factor linear equations Ax = b using LU decomposition A = LU where L is
  // lower triangular matrix and U is upper triangular matrix. Input is
  // square matrix A, integer array of pivot indices index[0->n-1], and size
  // of square matrix n. Output factorization LU is in matrix A. If error is
  // found, method returns 0.
  static int LUFactorLinearSystem(double **A, int *index, int size);

  // Description:
  // Thread safe version of LUFactorLinearSystem method.
  // Working memory array tmpSize of length size
  // must be passed in.
  static int LUFactorLinearSystem(double **A, int *index, int size,
                                  double *tmpSize);

  // Description:
  // Solve linear equations Ax = b using LU decomposition A = LU where L is
  // lower triangular matrix and U is upper triangular matrix. Input is
  // factored matrix A=LU, integer array of pivot indices index[0->n-1],
  // load vector x[0->n-1], and size of square matrix n. Note that A=LU and
  // index[] are generated from method LUFactorLinearSystem). Also, solution
  // vector is written directly over input load vector.
  static void LUSolveLinearSystem(double **A, int *index,
                                  double *x, int size);

  // Description:
  // Estimate the condition number of a LU factored matrix. Used to judge the
  // accuracy of the solution. The matrix A must have been previously factored
  // using the method LUFactorLinearSystem. The condition number is the ratio
  // of the infinity matrix norm (i.e., maximum value of matrix component)
  // divided by the minimum diagonal value. (This works for triangular matrices
  // only: see Conte and de Boor, Elementary Numerical Analysis.)
  static double EstimateMatrixCondition(double **A, int size);

  // Description:
  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a 3x3
  // real symmetric matrix. Square 3x3 matrix a; output eigenvalues in w;
  // and output eigenvectors in v. Resulting eigenvalues/vectors are sorted
  // in decreasing order; eigenvectors are normalized.
  static int Jacobi(float **a, float *w, float **v);
  static int Jacobi(double **a, double *w, double **v);

  // Description:
  // JacobiN iteration for the solution of eigenvectors/eigenvalues of a nxn
  // real symmetric matrix. Square nxn matrix a; size of matrix in n; output
  // eigenvalues in w; and output eigenvectors in v. Resulting
  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
  // normalized.  w and v need to be allocated previously
  static int JacobiN(float **a, int n, float *w, float **v);
  static int JacobiN(double **a, int n, double *w, double **v);

  // Description:
  // Solves a cubic equation c0*t^3 + c1*t^2 + c2*t + c3 = 0 when c0, c1, c2,
  // and c3 are REAL.  Solution is motivated by Numerical Recipes In C 2nd
  // Ed.  Return array contains number of (real) roots (counting multiple
  // roots as one) followed by roots themselves. The value in roots[4] is a
  // integer giving further information about the roots (see return codes for
  // int SolveCubic() ).
  // @deprecated Replaced by vtkPolynomialSolversUnivariate::SolveCubic() as of
  // VTK 5.8.
  VTK_LEGACY(static double* SolveCubic(double c0, double c1, double c2, double c3));

  // Description:
  // Solves a quadratic equation c1*t^2 + c2*t + c3 = 0 when c1, c2, and c3
  // are REAL.  Solution is motivated by Numerical Recipes In C 2nd Ed.
  // Return array contains number of (real) roots (counting multiple roots as
  // one) followed by roots themselves. Note that roots[3] contains a return
  // code further describing solution - see documentation for SolveCubic()
  // for meaning of return codes.
  // @deprecated Replaced by vtkPolynomialSolversUnivariate::SolveQuadratic() as
  // of VTK 5.8.
  VTK_LEGACY(static double* SolveQuadratic(double c0, double c1, double c2));

  // Description:
  // Solves a linear equation c2*t  + c3 = 0 when c2 and c3 are REAL.
  // Solution is motivated by Numerical Recipes In C 2nd Ed.
  // Return array contains number of roots followed by roots themselves.
  // @deprecated Replaced by vtkPolynomialSolversUnivariate::SolveLinear() as of
  // VTK 5.8.
  VTK_LEGACY(static double* SolveLinear(double c0, double c1));

  // Description:
  // Solves a cubic equation when c0, c1, c2, And c3 Are REAL.  Solution
  // is motivated by Numerical Recipes In C 2nd Ed.  Roots and number of
  // real roots are stored in user provided variables r1, r2, r3, and
  // num_roots. Note that the function can return the following integer
  // values describing the roots: (0)-no solution; (-1)-infinite number
  // of solutions; (1)-one distinct real root of multiplicity 3 (stored
  // in r1); (2)-two distinct real roots, one of multiplicity 2 (stored
  // in r1 & r2); (3)-three distinct real roots; (-2)-quadratic equation
  // with complex conjugate solution (real part of root returned in r1,
  // imaginary in r2); (-3)-one real root and a complex conjugate pair
  // (real root in r1 and real part of pair in r2 and imaginary in r3).
  // @deprecated Replaced by vtkPolynomialSolversUnivariate::SolveCubic() as of
  // VTK 5.8.
  VTK_LEGACY(static int SolveCubic(double c0, double c1, double c2, double c3,
                        double *r1, double *r2, double *r3, int *num_roots));

  // Description:
  // Solves a quadratic equation c1*t^2  + c2*t  + c3 = 0 when
  // c1, c2, and c3 are REAL.
  // Solution is motivated by Numerical Recipes In C 2nd Ed.
  // Roots and number of roots are stored in user provided variables
  // r1, r2, num_roots
  // @deprecated Replaced by vtkPolynomialSolversUnivariate::SolveQuadratic() as
  // of VTK 5.8.
  VTK_LEGACY(static int SolveQuadratic(double c0, double c1, double c2,
                            double *r1, double *r2, int *num_roots));

  // Description:
  // Algebraically extracts REAL roots of the quadratic polynomial with
  // REAL coefficients c[0] X^2 + c[1] X + c[2]
  // and stores them (when they exist) and their respective multiplicities
  // in the \a r and \a m arrays.
  // Returns either the number of roots, or -1 if ininite number of roots.
  // @deprecated Replaced by vtkPolynomialSolversUnivariate::SolveQuadratic() as
  // of VTK 5.8.
  VTK_LEGACY(static int SolveQuadratic( double* c, double* r, int* m ));

  // Description:
  // Solves a linear equation c2*t + c3 = 0 when c2 and c3 are REAL.
  // Solution is motivated by Numerical Recipes In C 2nd Ed.
  // Root and number of (real) roots are stored in user provided variables
  // r2 and num_roots.
  // @deprecated Replaced by vtkPolynomialSolversUnivariate::SolveLinear() as
  // of VTK 5.8.
  VTK_LEGACY(static int SolveLinear(double c0, double c1, double *r1, int *num_roots));

  // Description:
  // Solves for the least squares best fit matrix for the homogeneous equation X'M' = 0'.
  // Uses the method described on pages 40-41 of Computer Vision by
  // Forsyth and Ponce, which is that the solution is the eigenvector
  // associated with the minimum eigenvalue of T(X)X, where T(X) is the
  // transpose of X.
  // The inputs and output are transposed matrices.
  //    Dimensions: X' is numberOfSamples by xOrder,
  //                M' dimension is xOrder by yOrder.
  // M' should be pre-allocated. All matrices are row major. The resultant
  // matrix M' should be pre-multiplied to X' to get 0', or transposed and
  // then post multiplied to X to get 0
  static int SolveHomogeneousLeastSquares(int numberOfSamples, double **xt, int xOrder,
                                double **mt);


  // Description:
  // Solves for the least squares best fit matrix for the equation X'M' = Y'.
  // Uses pseudoinverse to get the ordinary least squares.
  // The inputs and output are transposed matrices.
  //    Dimensions: X' is numberOfSamples by xOrder,
  //                Y' is numberOfSamples by yOrder,
  //                M' dimension is xOrder by yOrder.
  // M' should be pre-allocated. All matrices are row major. The resultant
  // matrix M' should be pre-multiplied to X' to get Y', or transposed and
  // then post multiplied to X to get Y
  // By default, this method checks for the homogeneous condition where Y==0, and
  // if so, invokes SolveHomogeneousLeastSquares. For better performance when
  // the system is known not to be homogeneous, invoke with checkHomogeneous=0.
  static int SolveLeastSquares(int numberOfSamples, double **xt, int xOrder,
                               double **yt, int yOrder, double **mt, int checkHomogeneous=1);

  // Description:
  // Convert color in RGB format (Red, Green, Blue) to HSV format
  // (Hue, Saturation, Value). The input color is not modified.
  // The input RGB must be float values in the range [0,1].
  // The output ranges are hue [0, 1], saturation [0, 1], and
  // value [0, 1].
  static void RGBToHSV(const float rgb[3], float hsv[3])
    { RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv+1, hsv+2); }
  static void RGBToHSV(float r, float g, float b, float *h, float *s, float *v);
  static double* RGBToHSV(const double rgb[3]);
  static double* RGBToHSV(double r, double g, double b);
  static void RGBToHSV(const double rgb[3], double hsv[3])
    { RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv+1, hsv+2); }
  static void RGBToHSV(double r, double g, double b, double *h, double *s, double *v);

  // Description:
  // Convert color in HSV format (Hue, Saturation, Value) to RGB
  // format (Red, Green, Blue). The input color is not modified.
  static void HSVToRGB(const float hsv[3], float rgb[3])
    { HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb+1, rgb+2); }
  static void HSVToRGB(float h, float s, float v, float *r, float *g, float *b);
  static double* HSVToRGB(const double hsv[3]);
  static double* HSVToRGB(double h, double s, double v);
  static void HSVToRGB(const double hsv[3], double rgb[3])
    { HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb+1, rgb+2); }
  static void HSVToRGB(double h, double s, double v, double *r, double *g, double *b);

  // Description:
  // Convert color from the CIE-L*ab system to CIE XYZ.
  static void LabToXYZ(const double lab[3], double xyz[3]) {
    LabToXYZ(lab[0], lab[1], lab[2], xyz+0, xyz+1, xyz+2);
  }
  static void LabToXYZ(double L, double a, double b,
                       double *x, double *y, double *z);
  static double *LabToXYZ(const double lab[3]);

  // Description:
  // Convert Color from the CIE XYZ system to CIE-L*ab.
  static void XYZToLab(const double xyz[3], double lab[3]) {
    XYZToLab(xyz[0], xyz[1], xyz[2], lab+0, lab+1, lab+2);
  }
  static void XYZToLab(double x, double y, double z,
                       double *L, double *a, double *b);
  static double *XYZToLab(const double xyz[3]);

  // Description:
  // Convert color from the CIE XYZ system to RGB.
  static void XYZToRGB(const double xyz[3], double rgb[3]) {
    XYZToRGB(xyz[0], xyz[1], xyz[2], rgb+0, rgb+1, rgb+2);
  }
  static void XYZToRGB(double x, double y, double z,
                       double *r, double *g, double *b);
  static double *XYZToRGB(const double xyz[3]);

  // Description:
  // Convert color from the RGB system to CIE XYZ.
  static void RGBToXYZ(const double rgb[3], double xyz[3]) {
    RGBToXYZ(rgb[0], rgb[1], rgb[2], xyz+0, xyz+1, xyz+2);
  }
  static void RGBToXYZ(double r, double g, double b,
                       double *x, double *y, double *z);
  static double *RGBToXYZ(const double rgb[3]);

  // Description:
  // Convert color from the RGB system to CIE-L*ab.
  // The input RGB must be values in the range [0,1].
  // The output ranges of 'L' is [0, 100]. The output
  // range of 'a' and 'b' are approximately [-110, 110].
  static void RGBToLab(const double rgb[3], double lab[3]) {
    RGBToLab(rgb[0], rgb[1], rgb[2], lab+0, lab+1, lab+2);
  }
  static void RGBToLab(double red, double green, double blue,
                       double *L, double *a, double *b);
  static double *RGBToLab(const double rgb[3]);

  // Description:
  // Convert color from the CIE-L*ab system to RGB.
  static void LabToRGB(const double lab[3], double rgb[3]) {
    LabToRGB(lab[0], lab[1], lab[2], rgb+0, rgb+1, rgb+2);
  }
  static void LabToRGB(double L, double a, double b,
                       double *red, double *green, double *blue);
  static double *LabToRGB(const double lab[3]);

  // Description:
  // Set the bounds to an uninitialized state
  static void UninitializeBounds(double bounds[6]){
    bounds[0] = 1.0;
    bounds[1] = -1.0;
    bounds[2] = 1.0;
    bounds[3] = -1.0;
    bounds[4] = 1.0;
    bounds[5] = -1.0;
  }

  // Description:
  // Are the bounds initialized?
  static int AreBoundsInitialized(double bounds[6]){
    if ( bounds[1]-bounds[0]<0.0 )
      {
      return 0;
      }
    return 1;
  }

  // Description:
  // Clamp some values against a range
  // The method without 'clamped_values' will perform in-place clamping.
  static void ClampValue(double *value, const double range[2]);
  static void ClampValue(double value, const double range[2], double *clamped_value);
  static void ClampValues(
    double *values, int nb_values, const double range[2]);
  static void ClampValues(
    const double *values, int nb_values, const double range[2], double *clamped_values);

  // Description:
  // Clamp a value against a range and then normalized it between 0 and 1.
  // If range[0]==range[1], the result is 0.
  // \pre valid_range: range[0]<=range[1]
  // \post valid_result: result>=0.0 && result<=1.0
  static double ClampAndNormalizeValue(double value,
                                       const double range[2]);

  // Description:
  // Return the scalar type that is most likely to have enough precision
  // to store a given range of data once it has been scaled and shifted
  // (i.e. [range_min * scale + shift, range_max * scale + shift].
  // If any one of the parameters is not an integer number (decimal part != 0),
  // the search will default to float types only (float or double)
  // Return -1 on error or no scalar type found.
  static int GetScalarTypeFittingRange(
    double range_min, double range_max,
    double scale = 1.0, double shift = 0.0);

  // Description:
  // Get a vtkDataArray's scalar range for a given component.
  // If the vtkDataArray's data type is unsigned char (VTK_UNSIGNED_CHAR)
  // the range is adjusted to the whole data type range [0, 255.0].
  // Same goes for unsigned short (VTK_UNSIGNED_SHORT) but the upper bound
  // is also adjusted down to 4095.0 if was between ]255, 4095.0].
  // Return 1 on success, 0 otherwise.
  static int GetAdjustedScalarRange(
    vtkDataArray *array, int comp, double range[2]);

  // Description:
  // Return true if first 3D extent is within second 3D extent
  // Extent is x-min, x-max, y-min, y-max, z-min, z-max
  static int ExtentIsWithinOtherExtent(int extent1[6], int extent2[6]);

  // Description:
  // Return true if first 3D bounds is within the second 3D bounds
  // Bounds is x-min, x-max, y-min, y-max, z-min, z-max
  // Delta is the error margin along each axis (usually a small number)
  static int BoundsIsWithinOtherBounds(double bounds1[6], double bounds2[6], double delta[3]);

  // Description:
  // Return true if point is within the given 3D bounds
  // Bounds is x-min, x-max, y-min, y-max, z-min, z-max
  // Delta is the error margin along each axis (usually a small number)
  static int PointIsWithinBounds(double point[3], double bounds[6], double delta[3]);

  // Description:
  // In Euclidean space, there is a unique circle passing through any given
  // three non-collinear points P1, P2, and P3. Using Cartesian coordinates
  // to represent these points as spatial vectors, it is possible to use the
  // dot product and cross product to calculate the radius and center of the
  // circle. See: http://en.wikipedia.org/wiki/Circumcircle and more
  // specifically the section Barycentric coordinates from cross- and
  // dot-products
  static double Solve3PointCircle(const double p1[3], const double p2[3], const double p3[3], double center[3]);

  // Description:
  // Special IEEE-754 number used to represent positive infinity.
  static double Inf();

  // Description:
  // Special IEEE-754 number used to represent negative infinity.
  static double NegInf();

  // Description:
  // Special IEEE-754 number used to represent Not-A-Number (Nan).
  static double Nan();

  // Description:
  // Test if a number is equal to the special floating point value infinity.
  static int IsInf(double x);

  // Description:
  // Test if a number is equal to the special floating point value Not-A-Number (Nan).
  static int IsNan(double x);

protected:
  vtkMath() {};
  ~vtkMath() {};

  static vtkMathInternal Internal;
private:
  vtkMath(const vtkMath&);  // Not implemented.
  void operator=(const vtkMath&);  // Not implemented.
};

//----------------------------------------------------------------------------
inline float vtkMath::RadiansFromDegrees( float x )
{
  return x * 0.017453292f;
}

//----------------------------------------------------------------------------
inline double vtkMath::RadiansFromDegrees( double x )
{
  return x * 0.017453292519943295;
}

//----------------------------------------------------------------------------
inline float vtkMath::DegreesFromRadians( float x )
{
  return x * 57.2957795131f;
}

//----------------------------------------------------------------------------
inline double vtkMath::DegreesFromRadians( double x )
{
  return x * 57.29577951308232;
}

//----------------------------------------------------------------------------
inline vtkTypeInt64 vtkMath::Factorial( int N )
{
  vtkTypeInt64 r = 1;
  while ( N > 1 )
    {
    r *= N--;
    }
  return r;
}

//----------------------------------------------------------------------------
// Modify the trunc() operation provided by static_cast<int>() to get floor(),
// if x<0 (condition g) and x!=trunc(x) (condition n) then floor(x)=trunc(x)-1
// Note that in C++ conditions evaluate to values of 1 or 0 (true or false).
inline int vtkMath::Floor(double x)
{
  const int r = static_cast<int>(x);
  const int n = ( x != static_cast<double>(r) );
  const int g = ( x < 0 );
  return r - ( n & g );
}

//----------------------------------------------------------------------------
// Modify the trunc() operation provided by static_cast<int>() to get ceil(),
// if x>=0 (condition g) and x!=trunc(x) (condition n) then ceil(x)=trunc(x)+1
// Note that in C++ conditions evaluate to values of 1 or 0 (true or false).
inline int vtkMath::Ceil(double x)
{
  const int r = static_cast<int>(x);
  const int n = ( x != static_cast<double>(r) );
  const int g = ( x >= 0 );
  return r + ( n & g );
}

//----------------------------------------------------------------------------
inline float vtkMath::Normalize(float x[3])
{
  float den;
  if ( ( den = vtkMath::Norm( x ) ) != 0.0 )
    {
    for (int i=0; i < 3; i++)
      {
      x[i] /= den;
      }
    }
  return den;
}

//----------------------------------------------------------------------------
inline double vtkMath::Normalize(double x[3])
{
  double den;
  if ( ( den = vtkMath::Norm( x ) ) != 0.0 )
    {
    for (int i=0; i < 3; i++)
      {
      x[i] /= den;
      }
    }
  return den;
}

//----------------------------------------------------------------------------
inline float vtkMath::Normalize2D(float x[3])
{
  float den;
  if ( ( den = vtkMath::Norm2D( x ) ) != 0.0 )
    {
    for (int i=0; i < 2; i++)
      {
      x[i] /= den;
      }
    }
  return den;
}

//----------------------------------------------------------------------------
inline double vtkMath::Normalize2D(double x[3])
{
  double den;
  if ( ( den = vtkMath::Norm2D( x ) ) != 0.0 )
    {
    for (int i=0; i < 2; i++)
      {
      x[i] /= den;
      }
    }
  return den;
}

//----------------------------------------------------------------------------
inline float vtkMath::Determinant3x3(const float c1[3],
                                     const float c2[3],
                                     const float c3[3])
{
  return c1[0] * c2[1] * c3[2] + c2[0] * c3[1] * c1[2] + c3[0] * c1[1] * c2[2] -
         c1[0] * c3[1] * c2[2] - c2[0] * c1[1] * c3[2] - c3[0] * c2[1] * c1[2];
}

//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(const double c1[3],
                                      const double c2[3],
                                      const double c3[3])
{
  return c1[0] * c2[1] * c3[2] + c2[0] * c3[1] * c1[2] + c3[0] * c1[1] * c2[2] -
         c1[0] * c3[1] * c2[2] - c2[0] * c1[1] * c3[2] - c3[0] * c2[1] * c1[2];
}

//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(double a1, double a2, double a3,
                                      double b1, double b2, double b3,
                                      double c1, double c2, double c3)
{
    return ( a1 * vtkMath::Determinant2x2( b2, b3, c2, c3 )
           - b1 * vtkMath::Determinant2x2( a2, a3, c2, c3 )
           + c1 * vtkMath::Determinant2x2( a2, a3, b2, b3 ) );
}

//----------------------------------------------------------------------------
inline float vtkMath::Distance2BetweenPoints(const float x[3],
                                             const float y[3])
{
  return ( ( x[0] - y[0] ) * ( x[0] - y[0] )
           + ( x[1] - y[1] ) * ( x[1] - y[1] )
           + ( x[2] - y[2] ) * ( x[2] - y[2] ) );
}

//----------------------------------------------------------------------------
inline double vtkMath::Distance2BetweenPoints(const double x[3],
                                              const double y[3])
{
  return ( ( x[0] - y[0] ) * ( x[0] - y[0] )
           + ( x[1] - y[1] ) * ( x[1] - y[1] )
           + ( x[2] - y[2] ) * ( x[2] - y[2] ) );
}

//----------------------------------------------------------------------------
// Cross product of two 3-vectors. Result (a x b) is stored in z[3].
inline void vtkMath::Cross(const float x[3], const float y[3], float z[3])
{
  float Zx = x[1] * y[2] - x[2] * y[1];
  float Zy = x[2] * y[0] - x[0] * y[2];
  float Zz = x[0] * y[1] - x[1] * y[0];
  z[0] = Zx; z[1] = Zy; z[2] = Zz;
}

//----------------------------------------------------------------------------
// Cross product of two 3-vectors. Result (a x b) is stored in z[3].
inline void vtkMath::Cross(const double x[3], const double y[3], double z[3])
{
  double Zx = x[1] * y[2] - x[2] * y[1];
  double Zy = x[2] * y[0] - x[0] * y[2];
  double Zz = x[0] * y[1] - x[1] * y[0];
  z[0] = Zx; z[1] = Zy; z[2] = Zz;
}

//BTX
//----------------------------------------------------------------------------
template<class T>
inline double vtkDeterminant3x3(T A[3][3])
{
  return A[0][0] * A[1][1] * A[2][2] + A[1][0] * A[2][1] * A[0][2] +
         A[2][0] * A[0][1] * A[1][2] - A[0][0] * A[2][1] * A[1][2] -
         A[1][0] * A[0][1] * A[2][2] - A[2][0] * A[1][1] * A[0][2];
}
//ETX

//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(float A[3][3])
{
  return vtkDeterminant3x3( A );
}

//----------------------------------------------------------------------------
inline double vtkMath::Determinant3x3(double A[3][3])
{
  return vtkDeterminant3x3( A );
}

#ifndef VTK_LEGACY_REMOVE
//----------------------------------------------------------------------------
inline double* vtkMath::SolveCubic(double c0, double c1, double c2, double c3)
{
  VTK_LEGACY_REPLACED_BODY(vtkMath::SolveCubic, "VTK 5.8",
                           vtkPolynomialSolversUnivariate::SolveCubic);
  return vtkPolynomialSolversUnivariate::SolveCubic( c0, c1, c2, c3 );
}

//----------------------------------------------------------------------------
inline double* vtkMath::SolveQuadratic(double c0, double c1, double c2)
{
  VTK_LEGACY_REPLACED_BODY(vtkMath::SolveQuadratic, "VTK 5.8",
                           vtkPolynomialSolversUnivariate::SolveQuadratic);
  return vtkPolynomialSolversUnivariate::SolveQuadratic( c0, c1, c2 );
}

//----------------------------------------------------------------------------
inline double* vtkMath::SolveLinear(double c0, double c1)
{
  VTK_LEGACY_REPLACED_BODY(vtkMath::SolveLinear, "VTK 5.8",
                           vtkPolynomialSolversUnivariate::SolveLinear);
  return vtkPolynomialSolversUnivariate::SolveLinear( c0, c1 );
}

//----------------------------------------------------------------------------
inline int vtkMath::SolveCubic(double c0, double c1, double c2, double c3,
                               double *r1, double *r2, double *r3, int *num_roots)
{
  VTK_LEGACY_REPLACED_BODY(vtkMath::SolveCubic, "VTK 5.8",
                           vtkPolynomialSolversUnivariate::SolveCubic);
  return vtkPolynomialSolversUnivariate::SolveCubic( c0, c1, c2, c3, r1, r2, r3, num_roots );
}

//----------------------------------------------------------------------------
inline int vtkMath::SolveQuadratic(double c0, double c1, double c2,
                                   double *r1, double *r2, int *num_roots)
{
  VTK_LEGACY_REPLACED_BODY(vtkMath::SolveQuadratic, "VTK 5.8",
                           vtkPolynomialSolversUnivariate::SolveQuadratic);
  return vtkPolynomialSolversUnivariate::SolveQuadratic( c0, c1, c2, r1, r2, num_roots );
}

//----------------------------------------------------------------------------
inline int vtkMath::SolveQuadratic( double* c, double* r, int* m )
{
  VTK_LEGACY_REPLACED_BODY(vtkMath::SolveQuadratic, "VTK 5.8",
                           vtkPolynomialSolversUnivariate::SolveQuadratic);
  return vtkPolynomialSolversUnivariate::SolveQuadratic( c, r, m );
}

//----------------------------------------------------------------------------
inline int vtkMath::SolveLinear(double c0, double c1, double *r1, int *num_roots)
{
  VTK_LEGACY_REPLACED_BODY(vtkMath::SolveLinear, "VTK 5.8",
                           vtkPolynomialSolversUnivariate::SolveLinear);
  return vtkPolynomialSolversUnivariate::SolveLinear( c0, c1, r1, num_roots );
}
#endif

//----------------------------------------------------------------------------
inline void vtkMath::ClampValue(double *value, const double range[2])
{
  if (value && range)
    {
    if (*value < range[0])
      {
      *value = range[0];
      }
    else if (*value > range[1])
      {
      *value = range[1];
      }
    }
}

//----------------------------------------------------------------------------
inline void vtkMath::ClampValue(
  double value, const double range[2], double *clamped_value)
{
  if (range && clamped_value)
    {
    if (value < range[0])
      {
      *clamped_value = range[0];
      }
    else if (value > range[1])
      {
      *clamped_value = range[1];
      }
    else
      {
      *clamped_value = value;
      }
    }
}

// ---------------------------------------------------------------------------
inline double vtkMath::ClampAndNormalizeValue(double value,
                                              const double range[2])
{
  assert("pre: valid_range" && range[0]<=range[1]);

  double result;
  if(range[0]==range[1])
    {
      result=0.0;
    }
  else
    {
      // clamp
      if(value<range[0])
        {
          result=range[0];
        }
      else
        {
          if(value>range[1])
            {
              result=range[1];
            }
          else
            {
              result=value;
            }
        }

      // normalize
      result=( result - range[0] ) / ( range[1] - range[0] );
    }

  assert("post: valid_result" && result>=0.0 && result<=1.0);

  return result;
}

#if defined(VTK_HAS_ISINF)
#ifndef __WRAP__ // Fixes bug 13443 for VTK 5.10
//-----------------------------------------------------------------------------
inline int vtkMath::IsInf(double x)
{
  return (isinf(x) ? 1 : 0);
}
#endif
#endif

#if defined(VTK_HAS_ISNAN)
#ifndef __WRAP__ // Fixes bug 13443 for VTK 5.10
//-----------------------------------------------------------------------------
inline int vtkMath::IsNan(double x)
{
  return (isnan(x) ? 1 : 0);
}
#endif
#endif

#endif