This file is indexed.

/usr/include/vtk-5.10/vtkGenericDataSet.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkGenericDataSet.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkGenericDataSet - defines dataset interface
// .SECTION Description
// In VTK, spatial-temporal data is defined in terms of a dataset. The
// dataset consists of geometry (e.g., points), topology (e.g., cells), and
// attributes (e.g., scalars, vectors, etc.) vtkGenericDataSet is an abstract
// class defining this abstraction.
//
// Since vtkGenericDataSet provides a general interface to manipulate data,
// algorithms that process it tend to be slower than those specialized for a
// particular data type. For this reason, there are concrete, non-abstract
// subclasses that represent and provide access to data more efficiently.
// Note that filters to process this dataset type are currently found in the
// VTK/GenericFiltering/ subdirectory.
//
// Unlike the vtkDataSet class, vtkGenericDataSet provides a more flexible
// interface including support for iterators. vtkGenericDataSet is also
// designed to interface VTK to external simulation packages without the
// penalty of copying memory (see VTK/GenericFiltering/README.html) for
// more information. Thus vtkGenericDataSet plays a central role in the
// adaptor framework.
//
// Please note that this class introduces the concepts of "boundary cells".
// This refers to the boundaries of a cell (e.g., face of a tetrahedron)
// which may in turn be represented as a cell. Boundary cells are derivative
// topological features of cells, and are therefore never explicitly
// represented in the dataset. Often in visualization algorithms, looping
// over boundaries (edges or faces) is employed, while the actual dataset
// cells may not traversed. Thus there are methods to loop over these
// boundary cells.
//
// Finally, as a point of clarification, points are not the same as vertices.
// Vertices refer to points, and points specify a position is space. Vertices
// are a type of 0-D cell. Also, the concept of a DOFNode, which is where
// coefficients for higher-order cells are kept, is a new concept introduced
// by the adaptor framework (see vtkGenericAdaptorCell for more information).
//
// .SECTION See Also
// vtkGenericAdaptorCell vtkDataSet

#ifndef __vtkGenericDataSet_h
#define __vtkGenericDataSet_h

#include "vtkDataObject.h"

class vtkCellTypes;
class vtkGenericCellIterator;
class vtkGenericAttributeCollection;
class vtkGenericCellTessellator;
class vtkGenericPointIterator;

class VTK_FILTERING_EXPORT vtkGenericDataSet : public vtkDataObject
{
public:
  // Description:
  // Standard VTK type and print macros.
  vtkTypeMacro(vtkGenericDataSet,vtkDataObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Return the number of points composing the dataset. See NewPointIterator()
  // for more details.
  // \post positive_result: result>=0
  virtual vtkIdType GetNumberOfPoints() = 0;

  // Description:
  // Return the number of cells that explicitly define the dataset. See
  // NewCellIterator() for more details.
  // \pre valid_dim_range: (dim>=-1) && (dim<=3)
  // \post positive_result: result>=0
  virtual vtkIdType GetNumberOfCells(int dim=-1) = 0;

  // Description:
  // Return -1 if the dataset is explicitly defined by cells of varying
  // dimensions or if there are no cells. If the dataset is explicitly
  // defined by cells of a unique dimension, return this dimension.
  // \post valid_range: (result>=-1) && (result<=3)
  virtual int GetCellDimension() = 0;

  // Description:
  // Get a list of types of cells in a dataset. The list consists of an array
  // of types (not necessarily in any order), with a single entry per type.
  // For example a dataset 5 triangles, 3 lines, and 100 hexahedra would
  // result a list of three entries, corresponding to the types VTK_TRIANGLE,
  // VTK_LINE, and VTK_HEXAHEDRON.
  // THIS METHOD IS THREAD SAFE IF FIRST CALLED FROM A SINGLE THREAD AND
  // THE DATASET IS NOT MODIFIED
  // \pre types_exist: types!=0
  virtual void GetCellTypes(vtkCellTypes *types);

  // Description:
  // Return an iterator to traverse cells of dimension `dim' (or all
  // dimensions if -1) that explicitly define the dataset. For instance, it
  // will return only tetrahedra if the mesh is defined by tetrahedra. If the
  // mesh is composed of two parts, one with tetrahedra and another part with
  // triangles, it will return both, but will not return the boundary edges
  // and vertices of these cells. The user is responsible for deleting the
  // iterator.
  // \pre valid_dim_range: (dim>=-1) && (dim<=3)
  // \post result_exists: result!=0
  virtual vtkGenericCellIterator *NewCellIterator(int dim=-1) = 0;

  // Description:
  // Return an iterator to traverse cell boundaries of dimension `dim' (or
  // all dimensions if -1) of the dataset.  If `exteriorOnly' is true, only
  // the exterior cell boundaries of the dataset will be returned, otherwise
  // it will return exterior and interior cell boundaries. The user is
  // responsible for deleting the iterator.
  // \pre valid_dim_range: (dim>=-1) && (dim<=2)
  // \post result_exists: result!=0
  virtual vtkGenericCellIterator *NewBoundaryIterator(int dim=-1,
                                                      int exteriorOnly=0) = 0;

  // Description:
  // Return an iterator to traverse the points composing the dataset; they
  // can be points that define a cell (corner points) or isolated points.
  // The user is responsible for deleting the iterator.
  // \post result_exists: result!=0
  virtual vtkGenericPointIterator *NewPointIterator()=0;

  // Description:
  // Locate the closest cell to position `x' (global coordinates) with
  // respect to a tolerance squared `tol2' and an initial guess `cell' (if
  // valid). The result consists in the `cell', the `subId' of the sub-cell
  // (0 if primary cell), the parametric coordinates `pcoord' of the
  // position. It returns whether the position is inside the cell or
  // not (boolean). Tolerance is used to control how close the point is to be
  // considered "in" the cell.
  // THIS METHOD IS NOT THREAD SAFE.
  // \pre not_empty: GetNumberOfCells()>0
  // \pre cell_exists: cell!=0
  // \pre positive_tolerance: tol2>0
  virtual int FindCell(double x[3],
                       vtkGenericCellIterator* &cell,
                       double tol2,
                       int &subId,
                       double pcoords[3]) = 0;

  // Description:
  // Locate the closest point `p' to position `x' (global coordinates).
  // \pre not_empty: GetNumberOfPoints()>0
  // \pre p_exists: p!=0
  virtual void FindPoint(double x[3],
                         vtkGenericPointIterator *p)=0;

  // Description:
  // Datasets are composite objects and need to check each part for their
  // modified time.
  virtual unsigned long int GetMTime();

  // Description:
  // Compute the geometry bounding box.
  virtual void ComputeBounds()=0;

  // Description:
  // Return a pointer to the geometry bounding box in the form
  // (xmin,xmax, ymin,ymax, zmin,zmax).
  // The return value is VOLATILE.
  // \post result_exists: result!=0
  virtual double *GetBounds();

  // Description:
  // Return the geometry bounding box in global coordinates in
  // the form (xmin,xmax, ymin,ymax, zmin,zmax) in the `bounds' array.
  virtual void GetBounds(double bounds[6]);

  // Description:
  // Get the center of the bounding box in global coordinates.
  // The return value is VOLATILE.
  // \post result_exists: result!=0
  virtual double *GetCenter();

  // Description:
  // Get the center of the bounding box in global coordinates.
  virtual void GetCenter(double center[3]);

  // Description:
  // Return the length of the diagonal of the bounding box.
  // \post positive_result: result>=0
  virtual double GetLength();

  // Description:
  // Get the collection of attributes associated with this dataset.
  vtkGetObjectMacro(Attributes, vtkGenericAttributeCollection);

  // Description:
  // Returns the attributes of the data object of the specified
  // attribute type. The type may be:
  // <ul>
  // <li>POINT  - Defined in vtkDataSet subclasses.
  // <li>CELL   - Defined in vtkDataSet subclasses.
  // <li>VERTEX - Defined in vtkGraph subclasses.
  // <li>EDGE   - Defined in vtkGraph subclasses.
  // <li>ROW    - Defined in vtkTable.
  // </ul>
  // The other attribute type, FIELD, will return NULL since
  // field data is stored as a vtkFieldData instance, not a
  // vtkDataSetAttributes instance. To retrieve field data, use
  // GetAttributesAsFieldData.
  virtual vtkDataSetAttributes* GetAttributes(int type)
    { return this->Superclass::GetAttributes(type); }

  // Description:
  // Set/Get a cell tessellator if cells must be tessellated during
  // processing.
  // \pre tessellator_exists: tessellator!=0
  virtual void SetTessellator(vtkGenericCellTessellator *tessellator);
  vtkGetObjectMacro(Tessellator,vtkGenericCellTessellator);

  // Description:
  // Actual size of the data in kilobytes; only valid after the pipeline has
  // updated. It is guaranteed to be greater than or equal to the memory
  // required to represent the data.
  virtual unsigned long GetActualMemorySize();

  // Description:
  // Return the type of data object.
  int GetDataObjectType();

  // Description:
  // Estimated size needed after tessellation (or special operation)
  virtual vtkIdType GetEstimatedSize() = 0;

  //BTX
  // Description:
  // Retrieve an instance of this class from an information object.
  static vtkGenericDataSet* GetData(vtkInformation* info);
  static vtkGenericDataSet* GetData(vtkInformationVector* v, int i=0);
  //ETX

protected:
  // Description:
  // Constructor with uninitialized bounds (1,-1, 1,-1, 1,-1),
  // empty attribute collection and default tessellator.
  vtkGenericDataSet();

  virtual ~vtkGenericDataSet();

  vtkGenericAttributeCollection *Attributes;

  //Main helper class to tesselate a higher order cell into linear ones.
  vtkGenericCellTessellator *Tessellator;

  double Bounds[6];  // (xmin,xmax, ymin,ymax, zmin,zmax) geometric bounds
  double Center[3]; // Center of the geometric bounding box
  vtkTimeStamp ComputeTime; // Time at which bounds, center, etc. computed

private:
  vtkGenericDataSet(const vtkGenericDataSet&);  // Not implemented.
  void operator=(const vtkGenericDataSet&);    // Not implemented.
};

#endif