This file is indexed.

/usr/include/vtk-5.10/vtkFixedPointVolumeRayCastMapper.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkFixedPointVolumeRayCastMapper.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkFixedPointVolumeRayCastMapper - A fixed point mapper for volumes
// .SECTION Description
// This is a software ray caster for rendering volumes in vtkImageData. 
// It works with all input data types and up to four components. It performs
// composite or MIP rendering, and can be intermixed with geometric data.
// Space leaping is used to speed up the rendering process. In addition,
// calculation are performed in 15 bit fixed point precision. This mapper
// is threaded, and will interleave scan lines across processors.
//
// This mapper is a good replacement for vtkVolumeRayCastMapper EXCEPT:
//   - it does not do isosurface ray casting
//   - it does only interpolate before classify compositing
//   - it does only maximum scalar value MIP
//
// The vtkVolumeRayCastMapper CANNOT be used in these instances when a
// vtkFixedPointVolumeRayCastMapper can be used:
//   - if the data is not unsigned char or unsigned short
//   - if the data has more than one component
//
// This mapper handles all data type from unsigned char through double.
// However, some of the internal calcultions are performed in float and
// therefore even the full float range may cause problems for this mapper
// (both in scalar data values and in spacing between samples). 
//
// Space leaping is performed by creating a sub-sampled volume. 4x4x4 
// cells in the original volume are represented by a min, max, and 
// combined gradient and flag value. The min max volume has three 
// unsigned shorts per 4x4x4 group of cells from the original volume -
// one reprenting the minumum scalar index (the scalar value adjusted
// to fit in the 15 bit range), the maximum scalar index, and a 
// third unsigned short which is both the maximum gradient opacity in
// the neighborhood (an unsigned char) and the flag that is filled
// in for the current lookup tables to indicate whether this region
// can be skipped.

// .SECTION see also
// vtkVolumeMapper

#ifndef __vtkFixedPointVolumeRayCastMapper_h
#define __vtkFixedPointVolumeRayCastMapper_h

#include "vtkVolumeMapper.h"

#define VTKKW_FP_SHIFT       15
#define VTKKW_FPMM_SHIFT     17
#define VTKKW_FP_MASK        0x7fff
#define VTKKW_FP_SCALE       32767.0

class vtkMatrix4x4;
class vtkMultiThreader;
class vtkPlaneCollection;
class vtkRenderer;
class vtkTimerLog;
class vtkVolume;
class vtkTransform;
class vtkRenderWindow;
class vtkColorTransferFunction;
class vtkPiecewiseFunction;
class vtkFixedPointVolumeRayCastMIPHelper;
class vtkFixedPointVolumeRayCastCompositeHelper;
class vtkFixedPointVolumeRayCastCompositeGOHelper;
class vtkFixedPointVolumeRayCastCompositeGOShadeHelper;
class vtkFixedPointVolumeRayCastCompositeShadeHelper;
class vtkVolumeRayCastSpaceLeapingImageFilter;
class vtkDirectionEncoder;
class vtkEncodedGradientShader;
class vtkFiniteDifferenceGradientEstimator;
class vtkRayCastImageDisplayHelper;
class vtkFixedPointRayCastImage;
class vtkDataArray;

//BTX
// Forward declaration needed for use by friend declaration below.
VTK_THREAD_RETURN_TYPE FixedPointVolumeRayCastMapper_CastRays( void *arg );
VTK_THREAD_RETURN_TYPE vtkFPVRCMSwitchOnDataType( void *arg );
//ETX

class VTK_VOLUMERENDERING_EXPORT vtkFixedPointVolumeRayCastMapper : public vtkVolumeMapper
{
public:
  static vtkFixedPointVolumeRayCastMapper *New();
  vtkTypeMacro(vtkFixedPointVolumeRayCastMapper,vtkVolumeMapper);
  void PrintSelf( ostream& os, vtkIndent indent );

  // Description:
  // Set/Get the distance between samples used for rendering 
  // when AutoAdjustSampleDistances is off, or when this mapper
  // has more than 1 second allocated to it for rendering.
  vtkSetMacro( SampleDistance, float );
  vtkGetMacro( SampleDistance, float );

  // Description:
  // Set/Get the distance between samples when interactive rendering is happening.
  // In this case, interactive is defined as this volume mapper having less than 1
  // second allocated for rendering. When AutoAdjustSampleDistance is On, and the
  // allocated render time is less than 1 second, then this InteractiveSampleDistance
  // will be used instead of the SampleDistance above.
  vtkSetMacro( InteractiveSampleDistance, float );
  vtkGetMacro( InteractiveSampleDistance, float );
  
  // Description:
  // Sampling distance in the XY image dimensions. Default value of 1 meaning
  // 1 ray cast per pixel. If set to 0.5, 4 rays will be cast per pixel. If
  // set to 2.0, 1 ray will be cast for every 4 (2 by 2) pixels. This value
  // will be adjusted to meet a desired frame rate when AutoAdjustSampleDistances
  // is on.
  vtkSetClampMacro( ImageSampleDistance, float, 0.1f, 100.0f );
  vtkGetMacro( ImageSampleDistance, float );

  // Description:
  // This is the minimum image sample distance allow when the image
  // sample distance is being automatically adjusted.
  vtkSetClampMacro( MinimumImageSampleDistance, float, 0.1f, 100.0f );
  vtkGetMacro( MinimumImageSampleDistance, float );

  // Description:
  // This is the maximum image sample distance allow when the image
  // sample distance is being automatically adjusted.
  vtkSetClampMacro( MaximumImageSampleDistance, float, 0.1f, 100.0f );
  vtkGetMacro( MaximumImageSampleDistance, float );

  // Description:
  // If AutoAdjustSampleDistances is on, the the ImageSampleDistance
  // and the SampleDistance will be varied to achieve the allocated 
  // render time of this prop (controlled by the desired update rate 
  // and any culling in use). If this is an interactive render (more 
  // than 1 frame per second) the SampleDistance will be increased, 
  // otherwise it will not be altered (a binary decision, as opposed
  // to the ImageSampleDistance which will vary continuously).
  vtkSetClampMacro( AutoAdjustSampleDistances, int, 0, 1 );
  vtkGetMacro( AutoAdjustSampleDistances, int );
  vtkBooleanMacro( AutoAdjustSampleDistances, int );
  
  // Description:
  // Automatically compute the sample distance from the data spacing.  When
  // the number of voxels is 8, the sample distance will be roughly 1/200
  // the average voxel size. The distance will grow proportionally to
  // numVoxels^(1/3) until it reaches 1/2 average voxel size when number of
  // voxels is 1E6. Note that ScalarOpacityUnitDistance is still taken into
  // account and if different than 1, will effect the sample distance.
  vtkSetClampMacro( LockSampleDistanceToInputSpacing, int, 0, 1 );
  vtkGetMacro( LockSampleDistanceToInputSpacing, int );
  vtkBooleanMacro( LockSampleDistanceToInputSpacing, int );
  
  // Description:
  // Set/Get the number of threads to use. This by default is equal to
  // the number of available processors detected.
  void SetNumberOfThreads( int num );
  int GetNumberOfThreads();

  // Description:
  // If IntermixIntersectingGeometry is turned on, the zbuffer will be
  // captured and used to limit the traversal of the rays.
  vtkSetClampMacro( IntermixIntersectingGeometry, int, 0, 1 );
  vtkGetMacro( IntermixIntersectingGeometry, int );
  vtkBooleanMacro( IntermixIntersectingGeometry, int );

  // Description:
  // What is the image sample distance required to achieve the desired time?
  // A version of this method is provided that does not require the volume
  // argument since if you are using an LODProp3D you may not know this information.
  // If you use this version you must be certain that the ray cast mapper is
  // only used for one volume (and not shared among multiple volumes)
  float ComputeRequiredImageSampleDistance( float desiredTime,
                                            vtkRenderer *ren );
  float ComputeRequiredImageSampleDistance( float desiredTime,
                                            vtkRenderer *ren,
                                            vtkVolume *vol );
  
//BTX
  // Description:
  // WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE
  // Initialize rendering for this volume.
  void Render( vtkRenderer *, vtkVolume * );

  unsigned int ToFixedPointPosition( float val );
  void ToFixedPointPosition( float in[3], unsigned int out[3] );
  unsigned int ToFixedPointDirection( float dir );
  void ToFixedPointDirection( float in[3], unsigned int out[3] );
  void FixedPointIncrement( unsigned int position[3], unsigned int increment[3] );
  void GetFloatTripleFromPointer( float v[3], float *ptr );
  void GetUIntTripleFromPointer( unsigned int v[3], unsigned int *ptr );
  void ShiftVectorDown( unsigned int in[3], unsigned int out[3] );
  int CheckMinMaxVolumeFlag( unsigned int pos[3], int c );
  int CheckMIPMinMaxVolumeFlag( unsigned int pos[3], int c, unsigned short maxIdx, int flip );
  
  void LookupColorUC( unsigned short *colorTable,
                      unsigned short *scalarOpacityTable,
                      unsigned short index,
                      unsigned char  color[4] );
  void LookupDependentColorUC( unsigned short *colorTable,
                               unsigned short *scalarOpacityTable,
                               unsigned short index[4],
                               int            components,
                               unsigned char  color[4] );  
  void LookupAndCombineIndependentColorsUC( 
    unsigned short *colorTable[4],
    unsigned short *scalarOpacityTable[4],
    unsigned short index[4],
    float          weights[4],
    int            components,
    unsigned char  color[4] );  
  int CheckIfCropped( unsigned int pos[3] );
  
//ETX

  vtkGetObjectMacro( RenderWindow, vtkRenderWindow );
  vtkGetObjectMacro( MIPHelper, vtkFixedPointVolumeRayCastMIPHelper );
  vtkGetObjectMacro( CompositeHelper, vtkFixedPointVolumeRayCastCompositeHelper );
  vtkGetObjectMacro( CompositeGOHelper, vtkFixedPointVolumeRayCastCompositeGOHelper );
  vtkGetObjectMacro( CompositeGOShadeHelper, vtkFixedPointVolumeRayCastCompositeGOShadeHelper );
  vtkGetObjectMacro( CompositeShadeHelper, vtkFixedPointVolumeRayCastCompositeShadeHelper );
  vtkGetVectorMacro( TableShift, float, 4 );
  vtkGetVectorMacro( TableScale, float, 4 );
  vtkGetMacro( ShadingRequired, int );
  vtkGetMacro( GradientOpacityRequired, int );
  
  vtkGetObjectMacro( CurrentScalars, vtkDataArray );
  vtkGetObjectMacro( PreviousScalars, vtkDataArray );
  
  
  int             *GetRowBounds()                 {return this->RowBounds;}
  unsigned short  *GetColorTable(int c)           {return this->ColorTable[c];}
  unsigned short  *GetScalarOpacityTable(int c)   {return this->ScalarOpacityTable[c];}
  unsigned short  *GetGradientOpacityTable(int c) {return this->GradientOpacityTable[c];}
  vtkVolume       *GetVolume()                    {return this->Volume;}
  unsigned short **GetGradientNormal()            {return this->GradientNormal;}
  unsigned char  **GetGradientMagnitude()         {return this->GradientMagnitude;}
  unsigned short  *GetDiffuseShadingTable(int c)  {return this->DiffuseShadingTable[c];}
  unsigned short  *GetSpecularShadingTable(int c) {return this->SpecularShadingTable[c];}
  
  void ComputeRayInfo( int x, int y,
                       unsigned int pos[3],
                       unsigned int dir[3],
                       unsigned int *numSteps );

  void InitializeRayInfo( vtkVolume *vol );
  
  int ShouldUseNearestNeighborInterpolation( vtkVolume *vol );
  
  // Description:
  // Set / Get the underlying image object. One will be automatically
  // created - only need to set it when using from an AMR mapper which
  // renders multiple times into the same image.
  void SetRayCastImage( vtkFixedPointRayCastImage * );
  vtkGetObjectMacro( RayCastImage, vtkFixedPointRayCastImage  );

  int PerImageInitialization( vtkRenderer *, vtkVolume *, int,
                              double *, double *, int * );
  void PerVolumeInitialization( vtkRenderer *, vtkVolume * );
  void PerSubVolumeInitialization( vtkRenderer *, vtkVolume *, int );
  void RenderSubVolume();
  void DisplayRenderedImage( vtkRenderer *, vtkVolume * );
  void AbortRender();

  void CreateCanonicalView( vtkVolume *volume,
                            vtkImageData *image,
                            int blend_mode,
                            double viewDirection[3],
                            double viewUp[3] );
  
  // Description:
  // Get an estimate of the rendering time for a given volume / renderer.
  // Only valid if this mapper has been used to render that volume for
  // that renderer previously. Estimate is good when the viewing parameters
  // have not changed much since that last render.
  float GetEstimatedRenderTime( vtkRenderer *ren,
                                vtkVolume   *vol )
    { return this->RetrieveRenderTime( ren, vol ); }
  float GetEstimatedRenderTime( vtkRenderer *ren )
    { return this->RetrieveRenderTime( ren ); }
  

  // Description:
  // Set/Get the window / level applied to the final color.
  // This allows brightness / contrast adjustments on the
  // final image.
  // window is the width of the window.
  // level is the center of the window.
  // Initial window value is 1.0
  // Initial level value is 0.5
  // window cannot be null but can be negative, this way
  // values will be reversed.
  // |window| can be larger than 1.0
  // level can be any real value.
  vtkSetMacro( FinalColorWindow, float );
  vtkGetMacro( FinalColorWindow, float );
  vtkSetMacro( FinalColorLevel,  float );
  vtkGetMacro( FinalColorLevel,  float );

  
  // Here to be used by the mapper to tell the helper
  // to flip the MIP comparison in order to support
  // minimum intensity blending
  vtkGetMacro( FlipMIPComparison, int );
  
protected:
  vtkFixedPointVolumeRayCastMapper();
  ~vtkFixedPointVolumeRayCastMapper();

  // The helper class that displays the image
  vtkRayCastImageDisplayHelper *ImageDisplayHelper;

  // The distance between sample points along the ray
  float                        SampleDistance;
  float                        InteractiveSampleDistance;
  
  // The distance between rays in the image
  float                        ImageSampleDistance;
  float                        MinimumImageSampleDistance;
  float                        MaximumImageSampleDistance;
  int                          AutoAdjustSampleDistances;
  int                          LockSampleDistanceToInputSpacing;
  
  // Saved values used to restore 
  float                        OldSampleDistance;
  float                        OldImageSampleDistance;
  
  // Internal method for computing matrices needed during
  // ray casting
  void ComputeMatrices( double volumeOrigin[3],
                        double volumeSpacing[3],
                        int volumeExtent[6], 
                        vtkRenderer  *ren,
                        vtkVolume    *vol );
  
  int ComputeRowBounds( vtkRenderer *ren,
                        int imageFlag, int rowBoundsFlag,
                        int volumeExtent[6]);

  void CaptureZBuffer( vtkRenderer *ren );
  
  friend VTK_THREAD_RETURN_TYPE FixedPointVolumeRayCastMapper_CastRays( void *arg );
  friend VTK_THREAD_RETURN_TYPE vtkFPVRCMSwitchOnDataType( void *arg );
  
  vtkMultiThreader  *Threader;

  vtkMatrix4x4   *PerspectiveMatrix;
  vtkMatrix4x4   *ViewToWorldMatrix;
  vtkMatrix4x4   *ViewToVoxelsMatrix;
  vtkMatrix4x4   *VoxelsToViewMatrix;
  vtkMatrix4x4   *WorldToVoxelsMatrix;
  vtkMatrix4x4   *VoxelsToWorldMatrix;

  vtkMatrix4x4   *VolumeMatrix;
  
  vtkTransform   *PerspectiveTransform;
  vtkTransform   *VoxelsTransform;
  vtkTransform   *VoxelsToViewTransform;

  // This object encapsulated the image and all related information
  vtkFixedPointRayCastImage *RayCastImage;
  
  int             *RowBounds;
  int             *OldRowBounds;

  float           *RenderTimeTable;
  vtkVolume      **RenderVolumeTable;
  vtkRenderer    **RenderRendererTable;
  int              RenderTableSize;
  int              RenderTableEntries;

  void             StoreRenderTime( vtkRenderer *ren, vtkVolume *vol, float t );
  float            RetrieveRenderTime( vtkRenderer *ren, vtkVolume *vol );
  float            RetrieveRenderTime( vtkRenderer *ren );

  int              IntermixIntersectingGeometry;

  float            MinimumViewDistance;

  vtkColorTransferFunction *SavedRGBFunction[4];
  vtkPiecewiseFunction     *SavedGrayFunction[4];
  vtkPiecewiseFunction     *SavedScalarOpacityFunction[4];
  vtkPiecewiseFunction     *SavedGradientOpacityFunction[4];
  int                       SavedColorChannels[4];
  float                     SavedScalarOpacityDistance[4];
  int                       SavedBlendMode;
  vtkImageData             *SavedParametersInput;
  vtkTimeStamp              SavedParametersMTime;
  
  vtkImageData             *SavedGradientsInput;
  vtkTimeStamp              SavedGradientsMTime;
 
  float                     SavedSampleDistance;
  
  
  unsigned short            ColorTable[4][32768*3];
  unsigned short            ScalarOpacityTable[4][32768];
  unsigned short            GradientOpacityTable[4][256];
  int                       TableSize[4];
  float                     TableScale[4];
  float                     TableShift[4]; 

  float                     GradientMagnitudeScale[4];
  float                     GradientMagnitudeShift[4];
  
  unsigned short           **GradientNormal;
  unsigned char            **GradientMagnitude;
  unsigned short            *ContiguousGradientNormal;
  unsigned char             *ContiguousGradientMagnitude;
  
  int                        NumberOfGradientSlices;
  
  vtkDirectionEncoder       *DirectionEncoder;

  vtkEncodedGradientShader  *GradientShader;
  
  vtkFiniteDifferenceGradientEstimator *GradientEstimator;
  
  unsigned short             DiffuseShadingTable [4][65536*3];
  unsigned short             SpecularShadingTable[4][65536*3];
  
  int                        ShadingRequired;
  int                        GradientOpacityRequired;

  vtkDataArray              *CurrentScalars;
  vtkDataArray              *PreviousScalars;
  
  vtkRenderWindow           *RenderWindow;
  vtkVolume                 *Volume; 
  
  int           ClipRayAgainstVolume( float rayStart[3],
                                      float rayEnd[3],
                                      float rayDirection[3],
                                      double bounds[6] );
  
  int           UpdateColorTable( vtkVolume *vol );
  int           UpdateGradients( vtkVolume *vol );
  int           UpdateShadingTable( vtkRenderer *ren,
                                    vtkVolume *vol );
  void          UpdateCroppingRegions();
  
  void          ComputeGradients( vtkVolume *vol );
  
  int           ClipRayAgainstClippingPlanes( float  rayStart[3],
                                              float  rayEnd[3],
                                              int    numClippingPlanes,
                                              float *clippingPlanes );
  
  unsigned int  FixedPointCroppingRegionPlanes[6];
  unsigned int  CroppingRegionMask[27];
  
  // Get the ZBuffer value corresponding to location (x,y) where (x,y)
  // are indexing into the ImageInUse image. This must be converted to
  // the zbuffer image coordinates. Nearest neighbor value is returned.
  float         GetZBufferValue( int x, int y );

  vtkFixedPointVolumeRayCastMIPHelper              *MIPHelper;
  vtkFixedPointVolumeRayCastCompositeHelper        *CompositeHelper;
  vtkFixedPointVolumeRayCastCompositeGOHelper      *CompositeGOHelper;
  vtkFixedPointVolumeRayCastCompositeShadeHelper   *CompositeShadeHelper;
  vtkFixedPointVolumeRayCastCompositeGOShadeHelper *CompositeGOShadeHelper;
  
  // Some variables used for ray computation
  float ViewToVoxelsArray[16];
  float WorldToVoxelsArray[16];
  float VoxelsToWorldArray[16];
  
  double CroppingBounds[6];
  
  int NumTransformedClippingPlanes;
  float *TransformedClippingPlanes;
  
  double SavedSpacing[3];
  
  
  // Min Max structure used to do space leaping
  unsigned short *MinMaxVolume;
  int             MinMaxVolumeSize[4];
  vtkImageData   *SavedMinMaxInput;
  vtkImageData   *MinMaxVolumeCache;
  vtkVolumeRayCastSpaceLeapingImageFilter * SpaceLeapFilter;

  void            UpdateMinMaxVolume( vtkVolume *vol );
  void            FillInMaxGradientMagnitudes( int fullDim[3],
                                               int smallDim[3] );
   
  float FinalColorWindow;
  float FinalColorLevel;

  int FlipMIPComparison;
  
  void ApplyFinalColorWindowLevel();

private:
  vtkFixedPointVolumeRayCastMapper(const vtkFixedPointVolumeRayCastMapper&);  // Not implemented.
  void operator=(const vtkFixedPointVolumeRayCastMapper&);  // Not implemented.
};


inline unsigned int vtkFixedPointVolumeRayCastMapper::ToFixedPointPosition( float val )
{
  return static_cast<unsigned int>(val * VTKKW_FP_SCALE + 0.5);
}

inline void vtkFixedPointVolumeRayCastMapper::ToFixedPointPosition( float in[3], unsigned int out[3] )
{
  out[0] = static_cast<unsigned int>(in[0] * VTKKW_FP_SCALE + 0.5);
  out[1] = static_cast<unsigned int>(in[1] * VTKKW_FP_SCALE + 0.5);
  out[2] = static_cast<unsigned int>(in[2] * VTKKW_FP_SCALE + 0.5);
}

inline unsigned int vtkFixedPointVolumeRayCastMapper::ToFixedPointDirection( float dir )
{
  return ((dir<0.0)?
          (static_cast<unsigned int>(-dir * VTKKW_FP_SCALE + 0.5)):
          (0x80000000+static_cast<unsigned int>(dir*VTKKW_FP_SCALE + 0.5)));
}

inline void vtkFixedPointVolumeRayCastMapper::ToFixedPointDirection( float in[3], unsigned int out[3] )
{
  out[0] = ((in[0]<0.0)?
            (static_cast<unsigned int>(-in[0] * VTKKW_FP_SCALE + 0.5)):
            (0x80000000+
             static_cast<unsigned int>(in[0]*VTKKW_FP_SCALE + 0.5)));
  out[1] = ((in[1]<0.0)?
            (static_cast<unsigned int>(-in[1] * VTKKW_FP_SCALE + 0.5)):
            (0x80000000+
             static_cast<unsigned int>(in[1]*VTKKW_FP_SCALE + 0.5)));
  out[2] = ((in[2]<0.0)?
            (static_cast<unsigned int>(-in[2] * VTKKW_FP_SCALE + 0.5)):
            (0x80000000+
             static_cast<unsigned int>(in[2]*VTKKW_FP_SCALE + 0.5)));
}

inline void vtkFixedPointVolumeRayCastMapper::FixedPointIncrement( unsigned int position[3], unsigned int increment[3] )
{
  if ( increment[0]&0x80000000 )
    {
    position[0] += (increment[0]&0x7fffffff);
    }
  else
    {
    position[0] -= increment[0];
    }
  if ( increment[1]&0x80000000 )
    {
    position[1] += (increment[1]&0x7fffffff);
    }
  else
    {
    position[1] -= increment[1];
    }
  if ( increment[2]&0x80000000 )
    {
    position[2] += (increment[2]&0x7fffffff);
    }
  else
    {
    position[2] -= increment[2];
    }
}


inline void vtkFixedPointVolumeRayCastMapper::GetFloatTripleFromPointer( float v[3], float *ptr )
{
  v[0] = *(ptr);
  v[1] = *(ptr+1);
  v[2] = *(ptr+2);
}

inline void vtkFixedPointVolumeRayCastMapper::GetUIntTripleFromPointer( unsigned int v[3], unsigned int *ptr )
{
  v[0] = *(ptr);
  v[1] = *(ptr+1);
  v[2] = *(ptr+2);
}

inline void vtkFixedPointVolumeRayCastMapper::ShiftVectorDown( unsigned int in[3],
                                                       unsigned int out[3] )
{
  out[0] = in[0] >> VTKKW_FP_SHIFT;
  out[1] = in[1] >> VTKKW_FP_SHIFT;
  out[2] = in[2] >> VTKKW_FP_SHIFT;
}

inline int vtkFixedPointVolumeRayCastMapper::CheckMinMaxVolumeFlag( unsigned int mmpos[3], int c )
{
  vtkIdType offset =
    static_cast<vtkIdType>(this->MinMaxVolumeSize[3]) *
    ( mmpos[2]*static_cast<vtkIdType>(
        this->MinMaxVolumeSize[0]*this->MinMaxVolumeSize[1]) +
      mmpos[1]*static_cast<vtkIdType>(this->MinMaxVolumeSize[0]) +
      mmpos[0] ) + static_cast<vtkIdType>(c);

  return ((*(this->MinMaxVolume + 3*offset + 2))&0x00ff);
}

inline int vtkFixedPointVolumeRayCastMapper::CheckMIPMinMaxVolumeFlag( unsigned int mmpos[3], int c,
                                                                       unsigned short maxIdx, int flip )
{
  vtkIdType offset =
    static_cast<vtkIdType>(this->MinMaxVolumeSize[3]) *
    ( mmpos[2]*static_cast<vtkIdType>(
        this->MinMaxVolumeSize[0]*this->MinMaxVolumeSize[1]) +
      mmpos[1]*static_cast<vtkIdType>(this->MinMaxVolumeSize[0]) +
      mmpos[0] ) + static_cast<vtkIdType>(c);

  if ( (*(this->MinMaxVolume + 3*offset + 2)&0x00ff) )
    {
    if (flip)
      {
      return ( *(this->MinMaxVolume + 3*offset) < maxIdx );
      }
    else
      {
      return ( *(this->MinMaxVolume + 3*offset + 1) > maxIdx );
      }
    }
  else
    {
    return 0;
    }
}

inline void vtkFixedPointVolumeRayCastMapper::LookupColorUC( unsigned short *colorTable,
                                                     unsigned short *scalarOpacityTable,
                                                     unsigned short index,
                                                     unsigned char  color[4] )
{
  unsigned short alpha = scalarOpacityTable[index];
  color[0] = static_cast<unsigned char>
    ((colorTable[3*index  ]*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
  color[1] = static_cast<unsigned char>
    ((colorTable[3*index+1]*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
  color[2] = static_cast<unsigned char>
    ((colorTable[3*index+2]*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
  color[3] = static_cast<unsigned char>(alpha>>(VTKKW_FP_SHIFT - 8));
}

inline void vtkFixedPointVolumeRayCastMapper::LookupDependentColorUC( unsigned short *colorTable,
                                                              unsigned short *scalarOpacityTable,
                                                              unsigned short index[4],
                                                              int            components,
                                                              unsigned char  color[4] )
{
  unsigned short alpha;
  switch ( components )
    {
    case 2:
      alpha = scalarOpacityTable[index[1]];
      color[0] = static_cast<unsigned char>
        ((colorTable[3*index[0]  ]*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
      color[1] = static_cast<unsigned char>
        ((colorTable[3*index[0]+1]*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
      color[2] = static_cast<unsigned char>
        ((colorTable[3*index[0]+2]*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
      color[3] = static_cast<unsigned char>(alpha>>(VTKKW_FP_SHIFT - 8));
      break;
    case 4:
      alpha = scalarOpacityTable[index[3]];
      color[0] = static_cast<unsigned char>((index[0]*alpha + 0x7fff)>>VTKKW_FP_SHIFT );
      color[1] = static_cast<unsigned char>((index[1]*alpha + 0x7fff)>>VTKKW_FP_SHIFT );
      color[2] = static_cast<unsigned char>((index[2]*alpha + 0x7fff)>>VTKKW_FP_SHIFT );
      color[3] = static_cast<unsigned char>(alpha>>(VTKKW_FP_SHIFT - 8));
      break;
    }
}


inline void vtkFixedPointVolumeRayCastMapper::LookupAndCombineIndependentColorsUC( unsigned short *colorTable[4],
                                                                           unsigned short *scalarOpacityTable[4],
                                                                           unsigned short  index[4],
                                                                           float           weights[4],
                                                                           int             components,
                                                                           unsigned char   color[4] )
{
  unsigned int tmp[4] = {0,0,0,0};
  
  for ( int i = 0; i < components; i++ )
    {
    unsigned short alpha = static_cast<unsigned short>(static_cast<float>(scalarOpacityTable[i][index[i]])*weights[i]);
    tmp[0] += static_cast<unsigned char>(((colorTable[i][3*index[i]  ])*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
    tmp[1] += static_cast<unsigned char>(((colorTable[i][3*index[i]+1])*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
    tmp[2] += static_cast<unsigned char>(((colorTable[i][3*index[i]+2])*alpha + 0x7fff)>>(2*VTKKW_FP_SHIFT - 8));
    tmp[3] += static_cast<unsigned char>(alpha>>(VTKKW_FP_SHIFT - 8));
    }

  color[0] = static_cast<unsigned char>((tmp[0]>255)?(255):(tmp[0]));
  color[1] = static_cast<unsigned char>((tmp[1]>255)?(255):(tmp[1]));
  color[2] = static_cast<unsigned char>((tmp[2]>255)?(255):(tmp[2]));
  color[3] = static_cast<unsigned char>((tmp[3]>255)?(255):(tmp[3]));
  
}

inline int vtkFixedPointVolumeRayCastMapper::CheckIfCropped( unsigned int pos[3] )
{
  int idx;
  
  if ( pos[2] < this->FixedPointCroppingRegionPlanes[4] )
    {
    idx = 0;
    }
  else if ( pos[2] > this->FixedPointCroppingRegionPlanes[5] )
    {
    idx = 18;
    }
  else
    {
    idx = 9;
    }

  if ( pos[1] >= this->FixedPointCroppingRegionPlanes[2] )
    {
    if ( pos[1] > this->FixedPointCroppingRegionPlanes[3] )
      {
      idx += 6;
      }
    else
      {
      idx += 3;
      }
    }

  if ( pos[0] >= this->FixedPointCroppingRegionPlanes[0] )
    {
    if ( pos[0] > this->FixedPointCroppingRegionPlanes[1] )
      {
      idx += 2;
      }
    else
      {
      idx += 1;
      }
    }
  
  return !(static_cast<unsigned int>(this->CroppingRegionFlags)
           &this->CroppingRegionMask[idx]);
}

#endif