/usr/include/vtk-5.10/vtkDataArray.h is in libvtk5-dev 5.10.1+dfsg-2.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkDataArray.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkDataArray - abstract superclass for arrays of numeric data
// .SECTION Description
//
// vtkDataArray is an abstract superclass for data array objects
// containing numeric data. It extends the API defined in
// vtkAbstractArray. vtkDataArray is an abstract superclass for data
// array objects. This class defines an API that all array objects
// must support. Note that the concrete subclasses of this class
// represent data in native form (char, int, etc.) and often have
// specialized more efficient methods for operating on this data (for
// example, getting pointers to data or getting/inserting data in
// native form). Subclasses of vtkDataArray are assumed to contain
// data whose components are meaningful when cast to and from double.
//
// .SECTION See Also
// vtkBitArray vtkCharArray vtkUnsignedCharArray vtkShortArray
// vtkUnsignedShortArray vtkIntArray vtkUnsignedIntArray vtkLongArray
// vtkUnsignedLongArray vtkDoubleArray vtkDoubleArray
#ifndef __vtkDataArray_h
#define __vtkDataArray_h
#include "vtkAbstractArray.h"
class vtkDoubleArray;
class vtkIdList;
class vtkInformationDoubleVectorKey;
class vtkInformationInformationVectorKey;
class vtkLookupTable;
class VTK_COMMON_EXPORT vtkDataArray : public vtkAbstractArray
{
public:
vtkTypeMacro(vtkDataArray,vtkAbstractArray);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// This method is here to make backward compatibility easier. It
// must return true if and only if an array contains numeric data.
// All vtkDataArray subclasses contain numeric data, hence this method
// always returns 1(true).
virtual int IsNumeric()
{ return 1; }
// Description:
// Return the size, in bytes, of the lowest-level element of an
// array. For vtkDataArray and subclasses this is the size of the
// data type.
virtual int GetElementComponentSize()
{ return this->GetDataTypeSize(); }
// Description:
// Set the tuple at the ith location using the jth tuple in the source array.
// This method assumes that the two arrays have the same type
// and structure. Note that range checking and memory allocation is not
// performed; use in conjunction with SetNumberOfTuples() to allocate space.
virtual void SetTuple(vtkIdType i, vtkIdType j, vtkAbstractArray* source) = 0;
// Description:
// Insert the jth tuple in the source array, at ith location in this array.
// Note that memory allocation is performed as necessary to hold the data.
// This pure virtual function is redeclared here to avoid
// declaration hidden warnings.
virtual void InsertTuple(vtkIdType i, vtkIdType j, vtkAbstractArray* source) = 0;
// Description:
// Insert the jth tuple in the source array, at the end in this array.
// Note that memory allocation is performed as necessary to hold the data.
// Returns the location at which the data was inserted.
// This pure virtual function is redeclared here to avoid
// declaration hidden warnings.
virtual vtkIdType InsertNextTuple(vtkIdType j, vtkAbstractArray* source) = 0;
// Description:
// Given a list of point ids, return an array of tuples.
// You must insure that the output array has been previously
// allocated with enough space to hold the data.
virtual void GetTuples(vtkIdList *ptIds, vtkAbstractArray *output);
// Description:
// Get the tuples for the range of points ids specified
// (i.e., p1->p2 inclusive). You must insure that the output array has
// been previously allocated with enough space to hold the data.
virtual void GetTuples(vtkIdType p1, vtkIdType p2, vtkAbstractArray *output);
// Description:
// Set the ith tuple in this array as the interpolated tuple value,
// given the ptIndices in the source array and associated
// interpolation weights.
// This method assumes that the two arrays are of the same type
// and strcuture.
virtual void InterpolateTuple(vtkIdType i, vtkIdList *ptIndices,
vtkAbstractArray* source, double* weights);
// Description
// Insert the ith tuple in this array as interpolated from the two values,
// p1 and p2, and an interpolation factor, t.
// The interpolation factor ranges from (0,1),
// with t=0 located at p1. This method assumes that the three arrays are of
// the same type. p1 is value at index id1 in source1, while, p2 is
// value at index id2 in source2.
virtual void InterpolateTuple(vtkIdType i,
vtkIdType id1, vtkAbstractArray* source1,
vtkIdType id2, vtkAbstractArray* source2, double t);
// Description:
// Get the data tuple at ith location. Return it as a pointer to an array.
// Note: this method is not thread-safe, and the pointer is only valid
// as long as another method invocation to a vtk object is not performed.
virtual double *GetTuple(vtkIdType i) = 0;
// Description:
// Get the data tuple at ith location by filling in a user-provided array,
// Make sure that your array is large enough to hold the NumberOfComponents
// amount of data being returned.
virtual void GetTuple(vtkIdType i, double * tuple) = 0;
// Description:
// These methods are included as convenience for the wrappers.
// GetTuple() and SetTuple() which return/take arrays can not be
// used from wrapped languages. These methods can be used instead.
double GetTuple1(vtkIdType i);
double* GetTuple2(vtkIdType i);
double* GetTuple3(vtkIdType i);
double* GetTuple4(vtkIdType i);
double* GetTuple9(vtkIdType i);
// Description:
// Set the data tuple at ith location. Note that range checking or
// memory allocation is not performed; use this method in conjunction
// with SetNumberOfTuples() to allocate space.
virtual void SetTuple(vtkIdType i, const float * tuple) = 0;
virtual void SetTuple(vtkIdType i, const double * tuple) = 0;
// Description:
// These methods are included as convenience for the wrappers.
// GetTuple() and SetTuple() which return/take arrays can not be
// used from wrapped languages. These methods can be used instead.
void SetTuple1(vtkIdType i, double value);
void SetTuple2(vtkIdType i, double val0, double val1);
void SetTuple3(vtkIdType i, double val0, double val1, double val2);
void SetTuple4(vtkIdType i, double val0, double val1, double val2,
double val3);
void SetTuple9(vtkIdType i, double val0, double val1, double val2,
double val3, double val4, double val5, double val6,
double val7, double val8);
// Description:
// Insert the data tuple at ith location. Note that memory allocation
// is performed as necessary to hold the data.
virtual void InsertTuple(vtkIdType i, const float * tuple) = 0;
virtual void InsertTuple(vtkIdType i, const double * tuple) = 0;
// Description:
// These methods are included as convenience for the wrappers.
// InsertTuple() which takes arrays can not be
// used from wrapped languages. These methods can be used instead.
void InsertTuple1(vtkIdType i, double value);
void InsertTuple2(vtkIdType i, double val0, double val1);
void InsertTuple3(vtkIdType i, double val0, double val1, double val2);
void InsertTuple4(vtkIdType i, double val0, double val1, double val2,
double val3);
void InsertTuple9(vtkIdType i, double val0, double val1, double val2,
double val3, double val4, double val5, double val6,
double val7, double val8);
// Description:
// Insert the data tuple at the end of the array and return the location at
// which the data was inserted. Memory is allocated as necessary to hold
// the data.
virtual vtkIdType InsertNextTuple(const float * tuple) = 0;
virtual vtkIdType InsertNextTuple(const double * tuple) = 0;
// Description:
// These methods are included as convenience for the wrappers.
// InsertTuple() which takes arrays can not be
// used from wrapped languages. These methods can be used instead.
void InsertNextTuple1(double value);
void InsertNextTuple2(double val0, double val1);
void InsertNextTuple3(double val0, double val1, double val2);
void InsertNextTuple4(double val0, double val1, double val2,
double val3);
void InsertNextTuple9(double val0, double val1, double val2,
double val3, double val4, double val5, double val6,
double val7, double val8);
// Description:
// These methods remove tuples from the data array. They shift data and
// resize array, so the data array is still valid after this operation. Note,
// this operation is fairly slow.
virtual void RemoveTuple(vtkIdType id) = 0;
virtual void RemoveFirstTuple() = 0;
virtual void RemoveLastTuple() = 0;
// Description:
// Return the data component at the ith tuple and jth component location.
// Note that i is less than NumberOfTuples and j is less than
// NumberOfComponents.
virtual double GetComponent(vtkIdType i, int j);
// Description:
// Set the data component at the ith tuple and jth component location.
// Note that i is less than NumberOfTuples and j is less than
// NumberOfComponents. Make sure enough memory has been allocated
// (use SetNumberOfTuples() and SetNumberOfComponents()).
virtual void SetComponent(vtkIdType i, int j, double c);
// Description:
// Insert the data component at ith tuple and jth component location.
// Note that memory allocation is performed as necessary to hold the data.
virtual void InsertComponent(vtkIdType i, int j, double c);
// Description:
// Get the data as a double array in the range (tupleMin,tupleMax) and
// (compMin, compMax). The resulting double array consists of all data in
// the tuple range specified and only the component range specified. This
// process typically requires casting the data from native form into
// doubleing point values. This method is provided as a convenience for data
// exchange, and is not very fast.
virtual void GetData(vtkIdType tupleMin, vtkIdType tupleMax, int compMin,
int compMax, vtkDoubleArray* data);
// Description:
// Deep copy of data. Copies data from different data arrays even if
// they are different types (using doubleing-point exchange).
virtual void DeepCopy(vtkAbstractArray *aa);
virtual void DeepCopy(vtkDataArray *da);
// Description:
// Fill a component of a data array with a specified value. This method
// sets the specified component to specified value for all tuples in the
// data array. This methods can be used to initialize or reinitialize a
// single component of a multi-component array.
virtual void FillComponent(int j, double c);
// Description:
// Copy a component from one data array into a component on this data array.
// This method copies the specified component ("fromComponent") from the
// specified data array ("from") to the specified component ("j") over all
// the tuples in this data array. This method can be used to extract
// a component (column) from one data array and paste that data into
// a component on this data array.
virtual void CopyComponent(int j, vtkDataArray *from,
int fromComponent);
// Description:
// Get the address of a particular data index. Make sure data is allocated
// for the number of items requested. Set MaxId according to the number of
// data values requested.
virtual void* WriteVoidPointer(vtkIdType id, vtkIdType number) = 0;
// Description:
// Return the memory in kilobytes consumed by this data array. Used to
// support streaming and reading/writing data. The value returned is
// guaranteed to be greater than or equal to the memory required to
// actually represent the data represented by this object. The
// information returned is valid only after the pipeline has
// been updated.
virtual unsigned long GetActualMemorySize();
// Description:
// Create default lookup table. Generally used to create one when none
// is available.
void CreateDefaultLookupTable();
// Description:
// Set/get the lookup table associated with this scalar data, if any.
void SetLookupTable(vtkLookupTable *lut);
vtkGetObjectMacro(LookupTable,vtkLookupTable);
// Description:
// Return the range of the array values for the given component.
// Range is copied into the array provided.
// If comp is equal to -1, it returns the range of the magnitude
// (if the number of components is equal to 1 it still returns the range of
// component 0).
void GetRange(double range[2], int comp)
{
this->ComputeRange(comp);
memcpy(range, this->Range, 2*sizeof(double));
}
double* GetRange(int comp)
{
this->ComputeRange(comp);
return this->Range;
}
// Description:
// Return the range of the array values for the 0th component.
// Range is copied into the array provided.
double* GetRange()
{
this->ComputeRange(0);
return this->Range;
}
void GetRange(double range[2])
{
this->GetRange(range,0);
}
// Description:
// These methods return the Min and Max possible range of the native
// data type. For example if a vtkScalars consists of unsigned char
// data these will return (0,255).
void GetDataTypeRange(double range[2]);
double GetDataTypeMin();
double GetDataTypeMax();
static void GetDataTypeRange(int type, double range[2]);
static double GetDataTypeMin(int type);
static double GetDataTypeMax(int type);
// Description:
// Return the maximum norm for the tuples.
// Note that the max. is computed everytime GetMaxNorm is called.
virtual double GetMaxNorm();
// Description:
// Creates an array for dataType where dataType is one of
// VTK_BIT, VTK_CHAR, VTK_SIGNED_CHAR, VTK_UNSIGNED_CHAR, VTK_SHORT,
// VTK_UNSIGNED_SHORT, VTK_INT, VTK_UNSIGNED_INT, VTK_LONG,
// VTK_UNSIGNED_LONG, VTK_DOUBLE, VTK_DOUBLE, VTK_ID_TYPE.
// Note that the data array returned has be deleted by the
// user.
static vtkDataArray* CreateDataArray(int dataType);
// Description:
// This key is used to hold a vector of COMPONENT_RANGE keys -- one
// for each component of the array. You may add additional per-component
// key-value pairs to information objects in this vector. However if you
// do so, you must be sure to either (1) set COMPONENT_RANGE to
// { VTK_DOUBLE_MAX, VTK_DOUBLE_MIN } or (2) call ComputeRange( component )
// <b>before</b> modifying the information object. Otherwise it is
// possible for modifications to the array to take place without the bounds
// on the component being updated since the modification time of the
// vtkInformation object is used to determine when the COMPONENT_RANGE
// values are out of date.
static vtkInformationInformationVectorKey* PER_COMPONENT();
// Description:
// This key is used to hold tight bounds on the range of
// one component over all tuples of the array.
// Two values (a minimum and maximum) are stored for each component.
// When GetRange() is called when no tuples are present in the array
// this value is set to { VTK_DOUBLE_MAX, VTK_DOUBLE_MIN }.
static vtkInformationDoubleVectorKey* COMPONENT_RANGE();
// Description:
// This key is used to hold tight bounds on the $L_2$ norm
// of tuples in the array.
// Two values (a minimum and maximum) are stored for each component.
// When GetRange() is called when no tuples are present in the array
// this value is set to { VTK_DOUBLE_MAX, VTK_DOUBLE_MIN }.
static vtkInformationDoubleVectorKey* L2_NORM_RANGE();
// Description:
// Copy information instance. Arrays use information objects
// in a variety of ways. It is important to have flexibility in
// this regard because certain keys should not be coppied, while
// others must be. NOTE: Up to the implmeneter to make sure that
// keys not inteneded to be coppied are excluded here.
virtual int CopyInformation(vtkInformation *infoFrom, int deep=1);
protected:
// Description:
// Compute the range for a specific component. If comp is set -1
// then L2 norm is computed on all components. Call ClearRange
// to force a recomputation if it is needed.
virtual void ComputeRange(int comp);
// Description:
// Slow range computation methods. Reimplement.
virtual void ComputeScalarRange(int comp);
virtual void ComputeVectorRange();
// Construct object with default tuple dimension (number of components) of 1.
vtkDataArray(vtkIdType numComp=1);
~vtkDataArray();
vtkLookupTable *LookupTable;
double Range[2];
private:
double* GetTupleN(vtkIdType i, int n);
private:
vtkDataArray(const vtkDataArray&); // Not implemented.
void operator=(const vtkDataArray&); // Not implemented.
};
#endif
|