This file is indexed.

/usr/include/x86_64-linux-gnu/visp3/sensor/vpScanPoint.h is in libvisp-sensor-dev 3.0.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/****************************************************************************
 *
 * This file is part of the ViSP software.
 * Copyright (C) 2005 - 2015 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * ("GPL") version 2 as published by the Free Software Foundation.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See http://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Single laser scanner point.
 *
 * Authors:
 * Fabien Spindler
 *
 *****************************************************************************/
#ifndef vpScanPoint_h
#define vpScanPoint_h

#include <visp3/core/vpMath.h>

#include <ostream>
#include <sstream>
#include <cmath>    // std::fabs
#include <limits>   // numeric_limits
#include <math.h>

/*!
  \file vpScanPoint.h

  \brief Implements a single laser scanner point.
*/

/*!

  \class vpScanPoint
  \ingroup group_sensor_laserscanner

  \brief Class that defines a single laser scanner point.

  This class stores data of a single scan point as:

  - cartesian coordinates in the 3D space that are available throw
    getX(), getY() and getZ() methods.

  - polar coordinates that are the native data provided by a laser
    scanner. By polar coordinates we mean here the radial distance and the
    horizontal angle of a point in the scanner layer and an additional
    vertical angle that gives the orientation of the layer.

*/
class /* VISP_EXPORT */ vpScanPoint // Note that here VISP_EXPORT should not be added since this class is complete inline
{
 public:
  /*! Default constructor. */
    inline vpScanPoint() : rDist(0), hAngle(0), vAngle(0) {}
  /*! Copy constructor. */
  inline vpScanPoint(const vpScanPoint &scanpoint) : rDist(0), hAngle(0), vAngle(0) {
    this->rDist = scanpoint.rDist;
    this->hAngle = scanpoint.hAngle;
    this->vAngle = scanpoint.vAngle;
  }
  /*! 
    Set the polar point coordinates. 
    \param r_dist : Radial distance in meter.
    \param h_angle : Horizontal angle in radian.
    \param v_angle : Vertical angle in radian.
  */
  inline vpScanPoint(double r_dist, double h_angle, double v_angle)
    : rDist(r_dist), hAngle(h_angle), vAngle(v_angle)
  {
    this->rDist = r_dist;
    this->hAngle = h_angle;
    this->vAngle = v_angle;
  }
  /*! Destructor that does nothing. */
  inline virtual ~vpScanPoint() {};
  /*! 
    Set the polar point coordinates. 
    \param r_dist : Radial distance in meter.
    \param h_angle : Horizontal angle in radian.
    \param v_angle : Vertical angle in radian.
  */
  inline void setPolar(double r_dist, double h_angle, double v_angle) {
    this->rDist = r_dist;
    this->hAngle = h_angle;
    this->vAngle = v_angle;
  }
  /*! 
    Return the radial distance in meter.
  */
  inline double getRadialDist() const {
    return ( this->rDist );
  }
  /*! 
    Returns the polar elevation (vertical) angle in radian.
  */
  inline double getVAngle() const {
    return ( this->vAngle );
  }
  /*! 
    Returns the polar elevation (vertical) angle in radian.
  */
  inline double getHAngle() const {
    return ( this->hAngle );
  }
  /*! 
    Returns the cartesian x coordinate.

    The x and y axis define an horizontal plane, where x is oriented
    positive in front of the laser while y on the left side.
    
  */
  inline double getX() const {
    return ( rDist * cos(this->hAngle) * cos(this->vAngle)  );
  }
  /*! 
    Returns the cartesian y coordinate.

    The x and y axis define an horizontal plane, where x is oriented
    positive in front of the laser while y on the left side.
    
  */
  inline double getY() const {
    return ( rDist * sin(this->hAngle) );
  }
  /*! 
    Returns the cartesian z coordinate.

    The z axis is vertical and oriented in direction of the sky.
    
  */
  inline double getZ() const {
    return ( rDist * cos(this->hAngle) * sin(this->vAngle) );
  }
   
  friend inline std::ostream &operator << (std::ostream &s, const vpScanPoint &p);

   /*!
     
     Returns true if sp1 and sp2 are equal; otherwire returns false.

   */
   friend inline bool operator==( const vpScanPoint &sp1, 
					      const vpScanPoint &sp2 ) {
     //return ( ( sp1.getRadialDist() == sp2.getRadialDist() ) 
     //	      && ( sp1.getHAngle() == sp2.getHAngle() )
     //	      && ( sp1.getVAngle() == sp2.getVAngle() ) );
     double rd1 = sp1.getRadialDist();
     double ha1 = sp1.getHAngle();
     double va1 = sp1.getVAngle();
     double rd2 = sp2.getRadialDist();
     double ha2 = sp2.getHAngle();
     double va2 = sp2.getVAngle();

     return ( ( std::fabs(rd1 - rd2) <= std::fabs(vpMath::maximum(rd1,rd2)) * std::numeric_limits<double>::epsilon() ) 
	      &&
	      ( std::fabs(ha1 - ha2) <= std::fabs(vpMath::maximum(ha1,ha2)) * std::numeric_limits<double>::epsilon() )
	      &&
	      ( std::fabs(va1 - va2) <= std::fabs(vpMath::maximum(va1,va2)) * std::numeric_limits<double>::epsilon() ) );
   }
   
   /*!
     
     Returns true if sp1 and sp2 are different; otherwire returns false.

   */
   friend inline bool operator!=( const vpScanPoint &sp1, 
					      const vpScanPoint &sp2 ) {
     //return ( ( sp1.getRadialDist() != sp2.getRadialDist() )
     //     || ( sp1.getHAngle() != sp2.getHAngle() )  
     //     || ( sp1.getVAngle() != sp2.getVAngle() ) );
     double rd1 = sp1.getRadialDist();
     double ha1 = sp1.getHAngle();
     double va1 = sp1.getVAngle();
     double rd2 = sp2.getRadialDist();
     double ha2 = sp2.getHAngle();
     double va2 = sp2.getVAngle();
     return ( ( std::fabs(rd1 - rd2) > std::fabs(vpMath::maximum(rd1,rd2)) * std::numeric_limits<double>::epsilon() )
	      || 
	      ( std::fabs(ha1 - ha2) <= std::fabs(vpMath::maximum(ha1,ha2)) * std::numeric_limits<double>::epsilon() )  
	      || 
	      ( std::fabs(va1 - va2) <= std::fabs(vpMath::maximum(va1,va2)) * std::numeric_limits<double>::epsilon() ) );
 }

 private:
   double rDist;
   double hAngle;
   double vAngle;
};

/*!

  Print the values of the scan point on the output stream. Data are
  separated by a white space. Data that are print are first the
  polar coordinates, than the cartesian coordinates:
  - the radial distance in meter
  - the horizontal angle in radian
  - the vertical angle in radian
  - the cartesian X coordinate
  - the cartesian Y coordinate
  - the cartesian Z coordinate

  The following code

  \code
#include <iostream>
#include <visp3/sensor/vpScanPoint.h>

int main()
{
vpScanPoint p;
double radialDistance = 3; // 3 meters
double horizontalAngle = 1.12; // 1.12 radian
double verticalAngle = 0; // 0 radian for a horizontal layer

p.setPolar(radialDistance, horizontalAngle, verticalAngle);

std::cout << p << std::endl;
}
  \endcode
  will produce the prints
  \code
"3 1.12 0 1.307047339 2.700301327 0"
  \endcode

 */
inline std::ostream &operator << (std::ostream &s, const vpScanPoint &p) {
  std::ios_base::fmtflags original_flags = s.flags();

  s.precision(10);
  s << p.getRadialDist() << " "
    << p.getHAngle() << " "
    << p.getVAngle() << " "
    << p.getX() << " "
    << p.getY() << " " << p.getZ();

  s.setf(original_flags); // restore s to standard state

  return s;
}

#endif