This file is indexed.

/usr/include/ucommon/vector.h is in libucommon-dev 6.4.4-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
// Copyright (C) 2006-2014 David Sugar, Tycho Softworks.
// Copyright (C) 2015 Cherokees of Idaho.
//
// This file is part of GNU uCommon C++.
//
// GNU uCommon C++ is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// GNU uCommon C++ is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with GNU uCommon C++.  If not, see <http://www.gnu.org/licenses/>.

/**
 * Basic array and reusable object factory heap support.
 * This offers ucommon support for vector arrays, and for forming
 * reusable object pools.  Reusable object pools can be tied to local
 * heaps and offer a means to create type factories that do not require
 * global locking through malloc.
 * @file ucommon/vector.h
 */

#ifndef _UCOMMON_VECTOR_H_
#define _UCOMMON_VECTOR_H_

#ifndef _UCOMMON_THREAD_H_
#include <ucommon/thread.h>
#endif

namespace ucommon {

typedef unsigned short vectorsize_t;

/**
 * An array of reusable objects.  This class is used to support the
 * array_use template.  A pool of objects are created which can be
 * allocated as needed.  Deallocated objects are returned to the pool
 * so they can be reallocated later.  This is a private fixed size heap.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT ArrayReuse : public ReusableAllocator
{
private:
    size_t objsize;
    unsigned count, limit, used;
    caddr_t mem;

protected:
    ArrayReuse(size_t objsize, unsigned c);
    ArrayReuse(size_t objsize, unsigned c, void *memory);

public:
    /**
     * Destroy reusable private heap array.
     */
    ~ArrayReuse();

protected:
    bool avail(void) const;

    ReusableObject *get(timeout_t timeout);
    ReusableObject *get(void);
    ReusableObject *request(void);
};

/**
 * A mempager source of reusable objects.  This is used by the reuse_pager
 * template to allocate new objects either from a memory pager used as
 * a private heap, or from previously allocated objects that have been
 * returned for reuse.
  * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT PagerReuse : protected MemoryRedirect, protected ReusableAllocator
{
private:
    unsigned limit, count;
    size_t osize;

protected:
    PagerReuse(mempager *pager, size_t objsize, unsigned count);
    ~PagerReuse();

    bool avail(void) const;
    ReusableObject *get(void);
    ReusableObject *get(timeout_t timeout);
    ReusableObject *request(void);
};

/**
 * A managed vector for generic object pointers.  This vector is memory
 * managed at runtime by basic cow (copy-on-write) operations of a reference
 * counted object list.  This allows the size of the vector to be changed
 * at runtime and for the vector to be copied by managing reference counted
 * copies of the list of objects as needed.
 *
 * This class is somewhat analogous to the string class, but rather than
 * holding a string "array of chars" that may be re-sized and reallocated,
 * the Vector holds an array of Object pointers.  Since the object pointers
 * we store in the vector are objects inherited from Object, a vector can
 * itself act as a vector of smart pointers to  reference counted objects
 * (derived from CountedObject).
 * @author David Sugar <dyfet@gnutelephony.org>.
 */
class __EXPORT Vector
{
public:
    class __EXPORT array : public CountedObject
    {
    public:
#pragma pack(1)
        vectorsize_t max, len;
        ObjectProtocol *list[1];
#pragma pack()

        array(vectorsize_t size);
        void dealloc(void);
        void set(ObjectProtocol **items);
        void add(ObjectProtocol **list);
        void add(ObjectProtocol *obj);
        void purge(void);
        void inc(vectorsize_t adj);
        void dec(vectorsize_t adj);
    };

protected:
    array *data;

    array *create(vectorsize_t size) const;

    virtual void release(void);
    virtual void cow(vectorsize_t adj = 0);
    ObjectProtocol **list(void) const;

    friend class Vector::array;

protected:
    /**
     * Object handler for index outside vector range.
     * @return default object, often NULL.
     */
    virtual ObjectProtocol *invalid(void) const;

public:
    /**
     * npos is a constant for an "invalid" position value.
     */
    static const vectorsize_t npos;

    /**
     * Create an initially empty vector.
     */
    Vector();

    /**
     * Create a vector of size object pointers.
     * @param size of vector to create.
     */
    Vector(vectorsize_t size);

    /**
     * Create a vector of size objects from existing object pointers.
     * This allocates the vector and initializes the object pointers from
     * an existing array of object pointers.  Either a specific vector
     * size may be used, or the end of the vector will be found by a NULL
     * object pointer.
     * @param items to place into the vector.
     * @param size of the vector to create, or use NULL item for end.
     */
    Vector(ObjectProtocol **items, vectorsize_t size = 0);

    /**
     * Destroy the current reference counted vector of object pointers.
     */
    virtual ~Vector();

    /**
     * Get the size of the vector (number of active members).
     * @return number of active pointers in vector.
     */
    vectorsize_t len(void) const;

    /**
     * Get the effective allocation space used by the vector.  This is the
     * number of pointers it can hold before it needs to be resized.
     * @return storage size of vector.
     */
    vectorsize_t size(void) const;

    /**
     * Get an object pointer from a specified member of the vector.
     * @param index of member pointer to return.  Negative values from end.
     * @return object pointer of member.
     */
    ObjectProtocol *get(int index) const;

    /**
     * Copy the vector to an external pointer array.
     * @param mem array of external pointers to hold vector.
     * @param max size of the external array.
     * @return number of elements copied into external array.
     */
    vectorsize_t get(void **mem, vectorsize_t max) const;

    /**
     * Get the first object pointer contained in the vector.  Typically used
     * in iterations.
     * @return first object pointer.
     */
    ObjectProtocol *begin(void) const;

    /**
     * Get the last object pointer contained in the vector.  Typically used
     * in iterations.
     * @return last object pointer.
     */
    ObjectProtocol *end(void) const;

    /**
     * Find the first instance of a specific pointer in the vector.
     * @param pointer to locate in the vector.
     * @param offset to start searching in vector.
     * @return position of pointer in vector or npos if not found.
     */
    vectorsize_t find(ObjectProtocol *pointer, vectorsize_t offset = 0) const;

    /**
     * Split the vector at a specified offset.  All members after the split
     * are de-referenced and dropped from the vector.
     * @param position to split vector at.
     */
    void split(vectorsize_t position);

    /**
     * Split the vector after a specified offset.  All members before the split
     * are de-referenced and dropped.  The member starting at the split point
     * becomes the first member of the vector.
     * @param position to split vector at.
     */
    void rsplit(vectorsize_t position);

    /**
     * Set a member of the vector to an object.  If an existing member was
     * present and is being replaced, it is de-referenced.
     * @param position in vector to place object pointer.
     * @param pointer to place in vector.
     */
    void set(vectorsize_t position, ObjectProtocol *pointer);

    /**
     * Set the vector to a list of objects terminated by a NULL pointer.
     * @param list of object pointers.
     */
    void set(ObjectProtocol **list);

    /**
     * Add (append) a NULL terminated list of objects to the vector.
     * @param list of object pointers to add.
     */
    void add(ObjectProtocol **list);

    /**
     * Add (append) a single object pointer to the vector.
     * @param pointer to add to vector.
     */
    void add(ObjectProtocol *pointer);

    /**
     * De-reference and remove all pointers from the vector.
     */
    void clear(void);

    /**
     * Re-size & re-allocate the total (allocated) size of the vector.
     * @param size to allocate for vector.
     */
    virtual bool resize(vectorsize_t size);

    /**
     * Set (duplicate) an existing vector into our vector.
     * @param vector to duplicate.
     */
    inline void set(Vector &vector) {
        set(vector.list());
    }

    /**
     * Add (append) an existing vector to our vector.
     * @param vector to append.
     */
    inline void add(Vector &vector) {
        add(vector.list());
    }

    /**
     * Return a pointer from the vector by array reference.
     * @param index of vector member pointer to return.
     */
    inline ObjectProtocol *operator[](int index) {
        return get(index);
    }

    /**
     * Assign a member of the vector directly.
     * @param position to assign.
     * @param pointer to object to assign to vector.
     */
    inline void operator()(vectorsize_t position, ObjectProtocol *pointer) {
        set(position, pointer);
    }

    /**
     * Retrieve a member of the vector directly.
     * @param position to retrieve object from.
     * @return object pointer retrieved from vector.
     */
    inline ObjectProtocol *operator()(vectorsize_t position) {
        return get(position);
    }

    /**
     * Append a member to the vector directly.
     * @param pointer to object to add to vector.
     */
    inline void operator()(ObjectProtocol *pointer) {
        add(pointer);
    }

    /**
     * Assign (copy) into our existing vector from another vector.
     * @param vector to assign from.
     */
    inline void operator=(Vector &vector) {
        set(vector.list());
    }

    /**
     * Append into our existing vector from another vector.
     * @param vector to append from.
     */
    inline void operator+=(Vector &vector) {
        add(vector.list());
    }

    /**
     * Concatenate into our existing vector from assignment list.
     * @param vector to append from.
     */
    inline Vector& operator+(Vector &vector) {
        add(vector.list()); 
        return *this;
    }

    /**
     * Release vector and concat vector from another vector.
     * @param vector to assign from.
     */
    Vector &operator^(Vector &vector);

    /**
     * Release our existing vector and duplicate from another vector.  This
     * differs from assign in that the allocated size of the vector is reset
     * to the new list.
     * @param vector to assign from.
     */
    void operator^=(Vector &vector);

    /**
     * Drop first member of vector.
     */
    void operator++();

    /**
     * Drop last member of the vector.
     */
    void operator--();

    /**
     * Drop first specified members from the vector.
     * @param count of members to drop.
     */
    void operator+=(vectorsize_t count);

    /**
     * Drop last specified members from the vector.
     * @param count of members to drop.
     */
    void operator-=(vectorsize_t count);

    /**
     * Compute the effective vector size of a list of object pointers.
     * The size is found as the NULL pointer in the list.
     * @return size of list.
     */
    static vectorsize_t size(void **list);
};

/**
 * Vector with fixed size member list.  This is analogous to the memstring
 * class and is used to tie a vector to a fixed list in memory.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
class __EXPORT MemVector : public Vector
{
private:
    bool resize(vectorsize_t size);
    void cow(vectorsize_t adj = 0);
    void release(void);

    friend class Vector::array;

public:
    /**
     * Create and manage a vector stored in fixed memory.
     * @param pointer to where our vector list lives.
     * @param size of vector list in memory.
     */
    MemVector(void *pointer, vectorsize_t size);

    /**
     * Destroy the vector.
     */
    ~MemVector();

    /**
     * Assign an existing vector into our fixed vector list.
     * @param vector to copy from.
     */
    inline void operator=(Vector &vector) {
        set(vector);
    }

};

/**
 * A templated vector for a list of a specific Object subtype.  The
 * templated type must be derived from Object.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template<class T>
class vectorof : public Vector
{
public:
    /**
     * Create an empty vector for specified type.
     */
    inline vectorof() : Vector() {}

    /**
     * Create an empty vector of allocated size for specified type.
     * @param size of vector to allocate.
     */
    inline vectorof(vectorsize_t size) : Vector(size) {}

    inline T& operator[](int index) {
        return static_cast<T&>(Vector::get(index));
    }

    inline const T& at(int index) {
        return immutable_cast<T&>(Vector::get(index));
    }

    /**
     * Retrieve a typed member of the vector directly.
     * @param position to retrieve object from.
     * @return typed object pointer retrieved from vector.
     */
    inline T *operator()(vectorsize_t position) {
        return static_cast<T *>(Vector::get(position));
    }

    /**
     * Get the first typed object pointer contained in the vector.
     * @return first typed object pointer.
     */
    inline T *begin(void) {
        return static_cast<T *>(Vector::begin());
    }

    /**
     * Get the last typed object pointer contained in the vector.
     * @return last typed object pointer.
     */
    inline T *end(void) {
        return static_cast<T *>(Vector::end());
    }

    /**
     * Concatenate typed vector in an expression.
     * @param vector to concatenate.
     * @return effective object to continue in expression.
     */
    inline Vector &operator+(Vector &vector) {
        Vector::add(vector); 
        return static_cast<Vector &>(*this);
    }
};

/**
 * An array of reusable types.  A pool of typed objects is created which can
 * be allocated as needed.  Deallocated typed objects are returned to the pool
 * so they can be reallocated later.  This is a private fixed size heap.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template<class T>
class array_reuse : protected ArrayReuse
{
public:
    /**
     * Create private heap of reusable objects of specified type.
     * @param count of objects of specified type to allocate.
     */
    inline array_reuse(unsigned count) :
        ArrayReuse(sizeof(T), count) {}

    /**
     * Create reusable objects of specific type in preallocated memory.
     * @param count of objects of specified type in memory.
     * @param memory to use.
     */
    inline array_reuse(unsigned count, void *memory) :
        ArrayReuse(sizeof(T), count, memory) {}

    /**
     * Test if typed objects available in heap or re-use list.
     * @return true if objects still are available.
     */
    inline operator bool() const {
        return avail();
    }

    /**
     * Test if the entire heap has been allocated.
     * @return true if no objects are available.
     */
    inline bool operator!() const {
        return !avail();
    }

    /**
     * Request immediately next available typed object from the heap.
     * @return typed object pointer or NULL if heap is empty.
     */
    inline T* request(void) {
        return static_cast<T*>(ArrayReuse::request());
    }

    /**
     * Get a typed object from the heap.  This function blocks when the
     * heap is empty until an object is returned to the heap.
     * @return typed object pointer from heap.
     */
    inline T* get(void) {
        return static_cast<T*>(ArrayReuse::get());
    }

    /**
     * Create a typed object from the heap.  This function blocks when the
     * heap is empty until an object is returned to the heap.
     * @return typed object pointer from heap.
     */
    inline T* create(void) {
        return init<T>(static_cast<T*>(ArrayReuse::get()));
    }

    /**
     * Get a typed object from the heap.  This function blocks until the
     * the heap has an object to return or the timer has expired.
     * @param timeout to wait for heap in milliseconds.
     * @return typed object pointer from heap or NULL if timeout.
     */
    inline T* get(timeout_t timeout) {
        return static_cast<T*>(ArrayReuse::get(timeout));
    }

    /**
     * Create a typed object from the heap.  This function blocks until the
     * the heap has an object to return or the timer has expired.
     * @param timeout to wait for heap in milliseconds.
     * @return typed object pointer from heap or NULL if timeout.
     */
    inline T* create(timeout_t timeout) {
        return init<T>(static_cast<T*>(ArrayReuse::get(timeout)));
    }

    /**
     * Release (return) a typed object back to the heap for re-use.
     * @param object to return.
     */
    inline void release(T *object) {
        ArrayReuse::release(object);
    }

    /**
     * Get a typed object from the heap by type casting reference.  This
     * function blocks while the heap is empty.
     * @return typed object pointer from heap.
     */
    inline operator T*() {
        return array_reuse::get();
    }

    /**
     * Get a typed object from the heap by pointer reference.  This
     * function blocks while the heap is empty.
     * @return typed object pointer from heap.
     */
    inline T *operator*() {
        return array_reuse::get();
    }
};

/**
 * A reusable private pool of reusable types.  A pool of typed objects is
 * created which can be allocated from a memory pager.  Deallocated typed
 * objects are also returned to this pool so they can be reallocated later.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template <class T>
class paged_reuse : protected PagerReuse
{
public:
    /**
     * Create a managed reusable typed object pool.  This manages a heap of
     * typed objects that can either be reused from released objects or
     * allocate from an existing memory pager pool.
     * @param pager pool to allocate from.
     * @param count of objects of specified type to allocate.
     */
    inline paged_reuse(mempager *pager, unsigned count) :
        PagerReuse(pager, sizeof(T), count) {}

    /**
     * Test if typed objects available from the pager or re-use list.
     * @return true if objects still are available.
     */
    inline operator bool() const {
        return PagerReuse::avail();
    }

    /**
     * Test if no objects are available for reuse or the pager.
     * @return true if no objects are available.
     */
    inline bool operator!() const {
        return !PagerReuse::avail();
    }

    /**
     * Get a typed object from the pager heap.  This function blocks when the
     * heap is empty until an object is returned to the heap.
     * @return typed object pointer from heap.
     */
    inline T *get(void) {
        return static_cast<T*>(PagerReuse::get());
    }

    /**
     * Get a typed object from the pager heap.  This function blocks when the
     * heap is empty until an object is returned to the heap.  The objects
     * default constructor is used.
     * @return typed object pointer from heap.
     */
    inline T *create(void) {
        return init<T>(static_cast<T*>(PagerReuse::get()));
    }

    /**
     * Get a typed object from the heap.  This function blocks until the
     * the heap has an object to return or the timer has expired.
     * @param timeout to wait for heap in milliseconds.
     * @return typed object pointer from heap or NULL if timeout.
     */
    inline T *get(timeout_t timeout) {
        return static_cast<T*>(PagerReuse::get(timeout));
    }

    /**
     * Create a typed object from the heap.  This function blocks until the
     * the heap has an object to return or the timer has expired.  The
     * objects default constructor is used.
     * @param timeout to wait for heap in milliseconds.
     * @return typed object pointer from heap or NULL if timeout.
     */
    inline T *create(timeout_t timeout) {
        return init<T>(static_cast<T*>(PagerReuse::get(timeout)));
    }

    /**
     * Request immediately next available typed object from the pager heap.
     * @return typed object pointer or NULL if heap is empty.
     */
    inline T *request(void) {
        return static_cast<T*>(PagerReuse::request());
    }

    /**
     * Release (return) a typed object back to the pager heap for re-use.
     * @param object to return.
     */
    inline void release(T *object) {
        PagerReuse::release(object);
    }

    /**
     * Get a typed object from the pager heap by type casting reference.  This
     * function blocks while the heap is empty.
     * @return typed object pointer from heap.
     */
    inline T *operator*() {
        return paged_reuse::get();
    }

    /**
     * Get a typed object from the pager heap by pointer reference.  This
     * function blocks while the heap is empty.
     * @return typed object pointer from heap.
     */
    inline operator T*() {
        return paged_reuse::get();
    }
};

/**
 * Allocated vector list of a specified type.  This analogous to the stringbuf
 * class and allows one to create a vector with it's member list as a single
 * object that can live in the heap or that can be created at once and used as
 * a auto variable.
 * @author David Sugar <dyfet@gnutelephony.org>
 */
template<typename T, vectorsize_t S>
class vectorbuf : public MemVector
{
private:
    char buffer[sizeof(array) + (S * sizeof(void *))];

public:
    /**
     * Construct fixed sized vector object in heap or stack.
     */
    inline vectorbuf() : MemVector(buffer, S) {}

    /**
     * Get object pointer of specified type from fixed vector.
     * @param index of typed member to return, < 0 to use from end of list.
     * @return typed object pointer of member.
     */
    inline const T& at(int index) {
        return immutable_cast<T&>(Vector::get(index));
    }

    inline T& operator[](int index) {
        return static_cast<T&>(Vector::get(index));
    }

    /**
     * Retrieve a typed member of the fixed vector directly.
     * @param position to retrieve object from.
     * @return typed object pointer retrieved from vector.
     */
    inline T *operator()(vectorsize_t position) {
        return static_cast<T *>(Vector::get(position));
    }

    /**
     * Get the first typed object pointer contained in the fixed vector.
     * @return first typed object pointer.
     */
    inline T *begin(void) {
        return static_cast<T *>(Vector::begin());
    }

    /**
     * Get the last typed object pointer contained in the fixed vector.
     * @return last typed object pointer.
     */
    inline T *end(void) {
        return static_cast<T *>(Vector::end());
    }

    /**
     * Concatenate fixed typed vector in an expression.
     * @param vector to concatenate.
     * @return effective object to continue in expression.
     */
    inline Vector &operator+(Vector &vector) {
        Vector::add(vector); return static_cast<Vector &>(*this);
    }
};

} // namespace ucommon

#endif