This file is indexed.

/usr/include/tulip/Delaunay.h is in libtulip-dev 4.8.0dfsg-2build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
 *
 * This file is part of Tulip (www.tulip-software.org)
 *
 * Authors: David Auber and the Tulip development Team
 * from LaBRI, University of Bordeaux
 *
 * Tulip is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Tulip is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 */
///@cond DOXYGEN_HIDDEN

#ifndef DELAUNAY_H
#define DELAUNAY_H
#include <vector>
#include <set>

#include <tulip/Coord.h>

namespace tlp {

/**
 * @ingroup Graph
 * \brief functions for Delaunay Triangulations
 *
 * \author : David Auber/Daniel Archambault/Antoine Lambert : auber@tulip-software.org
 *
 * Computes the delaunay triangulation and returns the set of delaunay edges in the
 * vector edges and delaunay simplices (triangles in 2d, tetrahedra in 3d) of the triangulation in the vector simplices.
 * Edges and simplices are defined using a indexes into the original
 * set of points.
 */
TLP_SCOPE bool delaunayTriangulation(std::vector<Coord> &points,
                                     std::vector<std::pair<unsigned int, unsigned int> > &edges,
                                     std::vector<std::vector<unsigned int> > &simplices,
                                     bool voronoiMode = false);

/**
 * @ingroup Graph
 * @brief The VoronoiDiagram class
 */
class TLP_SCOPE VoronoiDiagram {
public:

  // A voronoi site.
  typedef Coord Site;

  // A voronoi vertex.
  typedef Coord Vertex;

  // A voronoi edge defined by the indexes of its extremities in the vertices vector
  typedef std::pair<unsigned int, unsigned int> Edge;

  // A voronoi Cell defined by the indexes of its vertices in the vertices vector
  typedef std::set<unsigned int> Cell;

  // Returns the number of voronoi sites
  unsigned int nbSites() const {
    return sites.size();
  }

  // Returns the number of voronoi vertices
  unsigned int nbVertices() const {
    return vertices.size();
  }

  // Returns the number of voronoi edges
  unsigned int nbEdges() const {
    return edges.size();
  }

  // Returns the ith site
  const Site &site(const unsigned int siteIdx) {
    return sites[siteIdx];
  }

  // Returns the ith voronoi vertex
  const Vertex &vertex(const unsigned int vertexIdx) {
    return vertices[vertexIdx];
  }

  // Returns the ith voronoi edge
  const Edge &edge(const unsigned int edgeIdx) {
    return edges[edgeIdx];
  }

  // Returns the ith voronoi cell
  const Cell &cell(const unsigned int cellIdx) {
    return cells[cellIdx];
  }

  // Returns the degree of the ith voronoi vertex
  unsigned int degreeOfVertex(const unsigned int vertexIdx) {
    return verticesDegree[vertexIdx];
  }

  // Returns the edges of the voronoi cell for the ith site
  std::vector<Edge> voronoiEdgesForSite(const unsigned int siteIdx) {
    std::vector<Edge> ret;

    for (size_t i = 0 ; i < siteToCellEdges[siteIdx].size() ; ++i) {
      ret.push_back(edges[siteToCellEdges[siteIdx][i]]);
    }

    return ret;
  }

  // Returns the cell for the ith site
  const Cell &voronoiCellForSite(const unsigned int siteIdx) {
    return cells[siteToCell[siteIdx]];
  }

  // Stores lists of each of these types defining the voronoi diagram
  std::vector<Site> sites;
  std::vector<Vertex> vertices;
  std::vector<Edge> edges;
  std::vector<Cell> cells;
  TLP_HASH_MAP<unsigned int, std::vector<unsigned int> > siteToCellEdges;
  TLP_HASH_MAP<unsigned int, unsigned int> siteToCell;
  TLP_HASH_MAP<unsigned int, unsigned int> verticesDegree;
};

/**
 * Computes the voronoi diagram of a set of points (for 2d and 3d layouts).
 * The set of input points are given in sites.  The resultant voronoi diagram is returned
 * in voronoiDiagram.  It automatically computes the set of all voronoi
 * vertices, edges and cells. In order to not have to deal with infinite
 * voronoi rays, the input layout is enclosed in its convex hull in 2d or
 * in its bounding box in 3d. It enables to have a connected voronoi cell
 * for each input site.
 */
TLP_SCOPE bool voronoiDiagram(std::vector<Coord> &sites, VoronoiDiagram &voronoiDiagram);


}
#endif
///@endcond