This file is indexed.

/usr/include/trilinos/Zoltan2_PartitioningSolutionQuality.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_PartitioningSolutionQuality.hpp
 *  \brief Defines the PartitioningSolutionQuality class.
 */

#ifndef ZOLTAN2_SOLUTIONQUALITY_HPP
#define ZOLTAN2_SOLUTIONQUALITY_HPP

#include <Zoltan2_Metric.hpp>
#include <Zoltan2_PartitioningSolution.hpp>

namespace Zoltan2{

/*! \brief A class that computes and returns quality metrics.
 *  \todo For some problems it will be necessary to build the
 *          Model again in order to compute metrics.  For now
 *          we don't have any problems like that.
    \todo write a unit test for this class
 */

template <typename Adapter>
  class PartitioningSolutionQuality {

private:

  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::part_t part_t;
  typedef typename Adapter::scalar_t scalar_t;

  const RCP<const Environment> env_;

  part_t numGlobalParts_;           // desired
  part_t targetGlobalParts_;        // actual
  part_t numNonEmpty_;              // of actual

  ArrayRCP<MetricValues<scalar_t> > metrics_;
  ArrayRCP<const MetricValues<scalar_t> > metricsConst_;

public:

  /*! \brief Constructor
      \param env   the problem environment
      \param problemComm  the problem communicator
      \param ia the problem input adapter
      \param soln  the solution

      The constructor does global communication to compute the metrics.
      The rest of the  methods are local.
   */
  PartitioningSolutionQuality(const RCP<const Environment> &env,
    const RCP<const Comm<int> > &problemComm,
    const RCP<const Adapter> &ia, 
    const RCP<const PartitioningSolution<Adapter> > &soln);

  /*! \brief Return the metric values.
   *  \param values on return is the array of values.
   */
  ArrayRCP<const MetricValues<scalar_t> > getMetrics() const{
    //BDD return metricsConst_;
      if(metricsConst_.is_null()) return metrics_;
      return metricsConst_;
  }

  /*! \brief Return the object count imbalance.
   *  \param imbalance on return is the object count imbalance.
   */
  void getObjectCountImbalance(scalar_t &imbalance) const{
    imbalance = metrics_[0].getMaxImbalance();
  }

  /*! \brief Return the object normed weight imbalance.
   *  \param imbalance on return is the object normed weight imbalance.
   *  If there were no weights, this is the object count imbalance.
   *  If there was one weight, it is the imbalance with respect to that weight.
   */
  void getNormedImbalance(scalar_t &imbalance) const{
    if (metrics_.size() > 1)
      imbalance = metrics_[1].getMaxImbalance();
    else 
      imbalance = metrics_[0].getMaxImbalance();
  }

  /*! \brief Return the imbalance for the requested weight.
   *  \param imbalance on return is the requested value.
   *  \param idx is the weight index requested, ranging from zero
   *     to one less than the number of weights provided in the input.
   *  If there were no weights, this is the object count imbalance.
   */
  void getWeightImbalance(scalar_t &imbalance, int idx=0) const{
    imbalance = 0;
    if (metrics_.size() > 2)  // idx of multiple weights
      imbalance = metrics_[idx+2].getMaxImbalance();
    else if (metrics_.size() == 2)   //  only one weight
      imbalance = metrics_[1].getMaxImbalance();
    else                       // no weights, return object count imbalance
      imbalance = metrics_[0].getMaxImbalance();
  }  

  /*! \brief Print all the metrics
   */
  void printMetrics(std::ostream &os) const {
    Zoltan2::printMetrics<scalar_t, part_t>(os, 
      targetGlobalParts_, numGlobalParts_, numNonEmpty_, 
      metrics_.view(0, metrics_.size()));
  }
};

template <typename Adapter>
  class GraphPartitioningSolutionQuality {

private:

  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::part_t part_t;
  typedef typename Adapter::scalar_t scalar_t;

  const RCP<const Environment> env_;

  part_t numGlobalParts_;           // desired
  part_t targetGlobalParts_;        // actual

  ArrayRCP<GraphMetricValues<scalar_t> > metrics_;
  ArrayRCP<const GraphMetricValues<scalar_t> > metricsConst_;

public:

  /*! \brief Constructor
      \param env   the problem environment
      \param problemComm  the problem communicator
      \param ia the problem input adapter
      \param soln  the solution

      The constructor does global communication to compute the metrics.
      The rest of the  methods are local.
   */
  GraphPartitioningSolutionQuality(const RCP<const Environment> &env,
    const RCP<const Comm<int> > &problemComm,
    const RCP<const GraphModel<typename Adapter::base_adapter_t> > &graph,
    const RCP<const Adapter> &ia, 
    const RCP<const PartitioningSolution<Adapter> > &soln);

  /*! \brief Return the graph metric values.
   *  \param values on return is the array of values.
   */
  ArrayRCP<const GraphMetricValues<scalar_t> > getGraphMetrics() const{
      if(metricsConst_.is_null()) return metrics_;
      return metricsConst_;
  }

  /*! \brief Return the max cut for the requested weight.
   *  \param cut on return is the requested value.
   *  \param idx is the weight index reqested, ranging from zero
   *     to one less than the number of weights provided in the input.
   *  If there were no weights, this is the cut count.
   */
  void getWeightCut(scalar_t &cut, int idx=0) const{
    if (metrics_.size() < idx)  // idx too high
      cut = metrics_[metrics_.size()-1].getGlobalMax();
    else if (idx < 0)   //  idx too low
      cut = metrics_[0].getGlobalMax();
    else                       // idx weight
      cut = metrics_[idx].getGlobalMax();
  }
};

template <typename Adapter>
  PartitioningSolutionQuality<Adapter>::PartitioningSolutionQuality(
  const RCP<const Environment> &env,
  const RCP<const Comm<int> > &problemComm,
  const RCP<const Adapter> &ia, 
  const RCP<const PartitioningSolution<Adapter> > &soln):
    env_(env), numGlobalParts_(0), targetGlobalParts_(0), numNonEmpty_(0),
    metrics_(),  metricsConst_()
{

  env->debug(DETAILED_STATUS, std::string("Entering PartitioningSolutionQuality"));
  env->timerStart(MACRO_TIMERS, "Computing metrics");

  // When we add parameters for which weights to use, we
  // should check those here.  For now we compute metrics
  // using all weights.

  const Teuchos::ParameterList &pl = env->getParameters();
  multiCriteriaNorm mcnorm = normBalanceTotalMaximum;

  const Teuchos::ParameterEntry *pe = pl.getEntryPtr("partitioning_objective");

  if (pe){
    std::string strChoice = pe->getValue<std::string>(&strChoice);
    if (strChoice == std::string("multicriteria_minimize_total_weight"))
      mcnorm = normMinimizeTotalWeight;
    else if (strChoice == std::string("multicriteria_minimize_maximum_weight"))
      mcnorm = normMinimizeMaximumWeight;
  } 

  try{
    objectMetrics<Adapter>(env, problemComm, mcnorm, ia, soln,
      numGlobalParts_, numNonEmpty_, metrics_);
  }
  Z2_FORWARD_EXCEPTIONS;

  targetGlobalParts_ = soln->getTargetGlobalNumberOfParts();

  env->timerStop(MACRO_TIMERS, "Computing metrics");
  env->debug(DETAILED_STATUS, std::string("Exiting PartitioningSolutionQuality"));
}

template <typename Adapter>
  GraphPartitioningSolutionQuality<Adapter>::GraphPartitioningSolutionQuality(
  const RCP<const Environment> &env,
  const RCP<const Comm<int> > &problemComm,
  const RCP<const GraphModel<typename Adapter::base_adapter_t> > &graph,
  const RCP<const Adapter> &ia, 
  const RCP<const PartitioningSolution<Adapter> > &soln):
    env_(env), numGlobalParts_(0), targetGlobalParts_(0),
    metrics_(),  metricsConst_()
{

  env->debug(DETAILED_STATUS,
	     std::string("Entering GraphPartitioningSolutionQuality"));
  env->timerStart(MACRO_TIMERS, "Computing graph metrics");
  // When we add parameters for which weights to use, we
  // should check those here.  For now we compute graph metrics
  // using all weights.

  typedef typename Adapter::part_t part_t;

  // Local number of objects.

  size_t numLocalObjects = ia->getLocalNumIDs();

  // Parts to which objects are assigned.

  const part_t *parts = soln->getPartListView();
  env->localInputAssertion(__FILE__, __LINE__, "parts not set",
			   ((numLocalObjects == 0) || parts), BASIC_ASSERTION);
  ArrayView<const part_t> partArray(parts, numLocalObjects);

  ArrayRCP<scalar_t> globalSums;

  try{
    globalWeightedCutsByPart<Adapter>(env,
      problemComm, graph, partArray, numGlobalParts_, metrics_, globalSums);
  }
  Z2_FORWARD_EXCEPTIONS;

  targetGlobalParts_ = soln->getTargetGlobalNumberOfParts();

  env->timerStop(MACRO_TIMERS, "Computing graph metrics");
  env->debug(DETAILED_STATUS,
	     std::string("Exiting GraphPartitioningSolutionQuality"));
}

}   // namespace Zoltan2

#endif